EOM modification for modulation at 118 MHz

Rich Abbott, Koji Arai Commissioning F2F Apr. 9, 2018 LIGO-G1800724 1/5

ALIGO EOM has 3 electrodes \& 3 RF ports for 3 mod. freq

- Port1: 9.1MHz (IFO f1), Port2: 24.1 MHz (IMC), Port3: 45.5 MHz (IFO f2)

How do we arrange the 4 RF frequencies?

- Port2 for 118.3 MHz (resonant)
- Port3 for 45.5 MHz (resonant) and 24.1 MHz (non-resonant)

Requirements \& Results: response of the new unit

Port	$\begin{aligned} & \text { Freq } \\ & {[\mathrm{MHzz}} \end{aligned}$	Required Mod [rad] [rad]		EOM response [mradpk/Vpk]	Required RF [dBm]	
		Acq	Opr		Acq	Opr
\#1	9.1	0.22	0.11	42	24.3	18.3
\#2	118.3	---	0.01	12		8.5
\#3	24.1	0.014	---	2.4	25.4	
\#3	45.5	0.28	0.20	43	26.2	23.3

EOM response

Shunt C matching

 (for $9.1 \mathrm{MHz} \& 118.3 \mathrm{MHz}$)

Shunt C+LCR matching (for $45.5 \mathrm{MHz}+24.1 \mathrm{MHz}$)

Modulation Response [radpk/Vpk]

Measured with a beat note of two lasers

EOM Crystal / Matching Circuit

RTP crystal: $4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 40 \mathrm{~mm}$ Plates: $14 \mathrm{~mm}, 5 \mathrm{~mm}, 14 \mathrm{~mm}$

Matching circuit
Toroidal cores for $24 / 45 / 118 \mathrm{MHz}$ Chip L for 9MHz

Installation remarks

- The crystal was not tested with a high power beam

At least, the crystal needs FC cleaning

- The crystal and the circuit are a matched pair.

The circuit will not work with the existing EOM crystal without serious tuning

- Driving power
24.1 MHz: 25dBm ~ requires an amplifier
45.5MHz: $26 \mathrm{dBm} \sim$ still in the linear region of the AM stabilized driver
9.1 MHz: $24 \mathrm{dBm} \sim$ almost at the edge of the linear region
- Use a power combiner for $45.5 \mathrm{MHz} \& 24.1 \mathrm{MHz}$
- Demod. phases and some of the LSC input matrix will change cf. 27MHz comes from CRxSB3, SB1xSB-2, SB1xSB4(=f2-f1), ...
- Matching circuit has no rid
because of a large toroidal L\& to eliminate stray C
do not touch the inductors
=> the resonant freqs and the matching conditions will change

Remarks towards an invac EOM

o Polarization: determined by the polarization of JAC

- The JAX prelim design: S-pol
- The crystal is wedged horizontally for P-pol
o Same 4 modulation freqs
o Thermal lensing
- The input light power will be adjusted on the PSL
- Power adjustment => different thermal lense in the EOM
- How large is the lens? Which crystal should we use (RTP? SLT?)
o Other thermal effect
- Temperature dependence of the inductance (ceramic core $\sim 125 \mathrm{ppm}$, vacuum core ?)
o Residual AM?
- Feedback control?

Production remarks

Make loss (R) as small as possible intrinsic loss of the RTP crystal? (dielectric loss?) inductor loss (DCR/skin effect) loss in the PCB (skin effect)

Stray capacitance

Stray shunt capacitance capacitance in inductors housing metal

Inductor stability

distance from the housing metal

changes stray capacitance
-> changes the resonant freq
-> changes the modulation phase \& amplitude
the housing has better shorting to ground

Port1: 9.1MHz

LIGO-G1800724 8/5

The EOM gain here is defined by the ratio of the voltages at the input of the matching circuit and at the EOM.

Port2: 118.3MHz

The EOM gain here is defined by the ratio of the voltages at the input of the matching circuit and at the EOM. ${ }^{4}$

Port3: $45.5 \mathrm{MHz}+24.1 \mathrm{MHz}$

LIGO-G1800724 10/5

The EOM gain here is defined by the ratio of the voltages at the input of the matching circuit and at the EOM.

EOM impedance

EOM impedance measurement (March 29, 2018)

