EOM modification for modulation at 118MHz

Rich Abbott, Koji Arai Commissioning F2F Apr. 9, 2018 LIGO-G1800724 1/5

ALIGO EOM has 3 electrodes & 3 RF ports for 3 mod. freq - Port1: 9.1MHz (IFO *f*1), Port2: 24.1MHz (IMC), Port3: 45.5MHz (IFO *f*2)

How do we arrange the 4 RF frequencies?

- Port2 for 118.3MHz (resonant)
- Port3 for 45.5MHz (resonant) and 24.1MHz (non-resonant)

Requirements & Results: response of the new unit

Port	Freq	Requir	ed Mod	EOM response	Required RF	
	[MHz]	[rad]	[rad]	[mradpk/Vpk]	[dBm]	
		Acq	Opr		Acq	Opr
#1	9.1	0.22	0.11	42	24.3	18.3
#2	118.3		0.01	¦ 12		8.5
#3	24.1	0.014		2.4	25.4	
#3	45.5	0.28	0.20	43	26.2	23.3

EOM response

Shunt C matching (for 9.1MHz & 118.3MHz)

Shunt C+LCR matching (for 45.5MHz+24.1MHz)

Modulation Response [radpk/Vpk] Measured with a beat note of two lasers

LIGO-G1800724 3/5

EOM Crystal / Matching Circuit

RTP crystal: 4mm x 4mm x 40mm Plates: 14mm, 5mm, 14mm

Matching circuit Toroidal cores for 24/45/118MHz Chip L for 9MHz

Installation remarks

- The crystal was not tested with a high power beam At least, the crystal needs FC cleaning
- The crystal and the circuit are a matched pair. The circuit will not work with the existing EOM crystal without serious tuning

- Driving power

24.1MHz: 25dBm ~ requires an amplifier
45.5MHz: 26dBm ~ still in the linear region of the AM stabilized driver
9.1MHz: 24dBm ~ almost at the edge of the linear region

- Use a power combiner for 45.5MHz & 24.1MHz
- Demod. phases and some of the LSC input matrix will change cf. 27MHz comes from CRxSB3, SB1xSB-2, SB1xSB4(=f2-f1), ...

- Matching circuit has no rid

because of a large toroidal L & to eliminate stray C
do not touch the inductors
=> the resonant freqs and the matching conditions will change

Remarks towards an invac EOM

o Polarization: determined by the polarization of JAC

LIGO-G1800724 5/5

- The JAX prelim design: S-pol
- The crystal is wedged horizontally for P-pol

o Same 4 modulation freqs

o Thermal lensing

- The input light power will be adjusted on the PSL
- Power adjustment => different thermal lense in the EOM
- How large is the lens? Which crystal should we use (RTP? SLT?)

o Other thermal effect

- Temperature dependence of the inductance (ceramic core ~125ppm, vacuum core ?)

o Residual AM?

- Feedback control?

Production remarks

Make loss (R) as small as possible

intrinsic loss of the RTP crystal? (dielectric loss?)
inductor loss (DCR/skin effect)
loss in the PCB (skin effect)

Stray capacitance

Stray shunt capacitance capacitance in inductors housing metal

Inductor stability

distance from the housing metal
 changes stray capacitance
-> changes the resonant freq
-> changes the modulation phase & amplitude

the housing has better shorting to ground

Port1: 9.1MHz

Port2: 118.3MHz

Port3: 45.5MHz + 24.1MHz

EOM impedance

