MULTI-MESSENGER ASTRONOMY WITH ADVANCED LIGO AND VIRGO

Min-A Cho

University of Maryland Department of Physics

LSC Open Data Workshop · March 26, 2018

LIGO DCC: <u>G1800652</u>

- Progenitors of gravitational wave transients
- Low-latency searches
- Information for multi-messenger astronomy

THE GRAVITATIONAL WAVE SPECTRUM

- The gravitational wave spectrum spans over 18 orders of magnitude, which is largely unexplored we had our first direct detection on September 14, 2015!
 Gravitational waves...
- Are excellent probes because they are not absorbed or scattered by matter and energy
- Come from the central engine of astrophysical objects
- Are only weakly beamed meaning detectors act as "microphones"

THE GRAVITATIONAL WAVE SPECTRUM

- The gravitational wave spectrum spans over 18 orders of magnitude, which is largely unexplored we had our first direct detection on September 14, 2015!
 Gravitational waves...
- Are excellent probes because they are not absorbed or scattered by matter and energy
- Come from the central engine of astrophysical objects
- Are only weakly beamed meaning detectors act as "microphones"

GW signal from GW150914, a BBH merger

The waveform of the merger: the collected history of the stretching and squeezing of space by gravitational waves

GW signal from GW150914, a BBH merger

The waveform of the merger: the collected history of the stretching and squeezing of space by gravitational waves

GW signal from GW150914, a BBH merger

The chirp: rising frequency of the gravitational waves

The chirp:
rising frequency of the
gravitational waves

The waveform of the merger: the collected history of the stretching and squeezing of space by gravitational waves

GW signal from GW150914, a BBH merger

Unique information about the source is encoded in the amplitude/phase evolution: masses, spins, and more...

Please see Katerina Chatziioannou's talk!

If the merger includes a neutron star, possible EM counterparts include

- Short gamma-ray burst
- Kilonova emissions: multi-wavelength afterglow emissions in X-ray, UV ray, optical, near infrared, and radio
- Radio blast wave emissions

Scientific motivation for joint observations

- Confirm short gamma-ray burst/BNS/NSBH connection
- Learn about energetics of short gamma-ray bursts from the beaming angle of the burst
- Independently measure the Hubble constant

CORE-COLLAPSE SUPERNOVAE

- The explosion occurred about 160,000 years ago
- Light is just reaching the earth now (in 1987)

CORE-COLLAPSE SUPERNOVAE

Scientific motivation for joint observations

- Unknown explosion mechanism
- Confirm observed mass gap in supernova remnants

GW'S FROM CORE-COLLAPSE SUPERNOVAE

The key to the resultant gravitational waves is the initial rotation rate (Ω_0) of the iron core!

GW'S FROM CORE-COLLAPSE SUPERNOVAE

	Neutrino mechanism	MHD mechanism
Progenitor	Non-rotating or slowly rotating stars $\Omega_0 < \sim \! 0.1 \ \text{rad/s}$ $\sim \! 99\%$ of the progenitors these are the main players!	Rapidly rotating star with strong magnetic fields $\Omega_0 > \sim \pi \ {\rm rad/s}, B_0 > 10^{11} \ {\rm G}$ ~1% (hypothetical link to magnetars and collapsars)
Main origin of gravitational wave emission	Turbulent convection and SASI (Standing Accretion Shock Instability)	Rotating bounce and non-axisymmetric instabilities
Gravitational wave signatures	Three generic phases: prompt convection, neutrino-driven convection & SASI, and explosion	Rotating bounce (< 20 ms post-bounce) and non-axisymmetric instabilities (< ? ms)
Detection prospects	 Requires 3rd generation detectors to see every galactic event with high SNR Close by events (2~3 kpc) are detectable with Advanced LIGO If detected, critical information about the supernova engine (convection vs. SASI dominant) can be obtained 	 Bounce GW signal: requires design sensitivity of Advanced LIGO GW's from non-axisymmetric instabilities: "quasi-periodicity" of the signal enhances chances of detection Detection of circular polarization: important probe of core rotation

GW'S FROM CORE-COLLAPSE SUI

	Neutrino mechanism	
Progenitor	Non-rotating or slowly rotating stars $\Omega_0 < \sim \! 0.1 \ \text{rad/s}$ $\sim \! 99\%$ of the progenitors these are the main players!	
Main origin of gravitational wave emission	Turbulent convection and SASI (Standing Accretion Shock Instability)	
Gravitational wave signatures	Three generic phases: prompt convection, neutrino-driven convection & SASI, and explosion	
Detection prospects	 Requires 3rd generation detectors to see every galactic event with high SNR Close by events (2~3 kpc) are detectable with Advanced LIGO If detected, critical information about the supernova engine (convection vs. SASI dominant) can be obtained 	

See reviews in: Janka (2017), Mezzacappa et al. (2015), Burrows (2013), Kotake et al. (2012), Yakunin et al. (2017), arXiv: 1701.07325v1

GW'S FROM CORE-COLLAPSE SUPERNOVAE

	Neutrino mechanism	MHD mechanism		
Progenitor	Non-rotating or slowly rotating stars $\Omega_0 < \sim \! 0.1 \; \text{rad/s}$ $\sim \! 99\%$ of the progenitors these are the main players!	Rapidly rotating star with strong magnetic fields $\Omega_0 > \sim \pi \ {\rm rad/s}, B_0 > 10^{11} \ {\rm G}$ ~1% (hypothetical link to magnetars and collapsars)		
Main origin of gravi wave emission The neutrino mechanism is inefficient; it can't deliver hyper-energetic supernovae Gravitational wave				
signatures	prompt convection, neutrino-driven convection & SASI, and explosion	non-axisymmetric instabilities (< ? ms)		
Detection prospects	 Requires 3rd generation detectors to see every galactic event with high SNR Close by events (2~3 kpc) are detectable with Advanced LIGO If detected, critical information about the supernova engine (convection vs. SASI dominant) can be obtained 	 Bounce GW signal: requires design sensitivity of Advanced LIGO GW's from non-axisymmetric instabilities: "quasi-periodicity" of the signal enhances chances of detection Detection of circular polarization: important probe of core rotation 		

GW'S FROM CORE-COLLAPSE SUPERNOVAE

Rapidly rotating star with strong magnetic

 $\Omega_0 > \sim \pi \text{ rad/s}, B_0 > 10^{11} \text{ G}$ ~1% (hypothetical link to magnetars and collapsars)

Rotating bounce and non-axisymmetric

Rotating bounce (< 20 ms post-bounce) and non-axisymmetric instabilities (<? ms)

- Bounce GW signal: requires design sensitivity of Advanced LIGO
- GW's from non-axisymmetric instabilities: "quasi-periodicity" of the signal enhances chances of detection
- **Detection of circular polarization:** important probe of core rotation

Jet collides with ambient medium (external shock wave)

High-energy gamma rays

X-rays

Visible light

Radio

Ma

Afterglow

LONG GAMMA-RAY BURSTS FOR ROTATING PROGENITORS Colliding shells em

Colliding shells emit low-energy gamma rays (internal shock wave)

Low-energy gamma rays

Faster shell

Slower shell

Black hole engine

We will see the burst up to 5 minutes after the gravitational wave signal if we are lucky because they are beamed!

Prompt emission

MAGNETAR STARQUAKES

Possible electromagnetic counterparts:

- Soft gamma repeaters
- Anomalous X-ray pulsars
- Radio/X-ray pulsar glitches

MAGNETAR STARQUAKES

Scientific motivation for joint observations:

 Unknown GW signal → Neutron star asteroseismology → Possible constraints on the equation of state

Simulation of a cosmic string network

OTHER SOURCES OF GW TRANSIENTS

More speculative sources

Intersecting cosmic strings

Simulation of a cosmic string network

Cosmic string cusp injections

Cosmic string cusp injections

Time [s]

1126259361.5 1126259361.8 1126259362 1126259362.2 1126259362.5

Loudest: GPS=1126259362.002, f=77.610 Hz, snr=12.151

Cosmic string cusp injections

Simulation of a cosmic string network

OTHER SOURCES OF GW TRANSIENTS

More speculative sources

Intersecting cosmic strings

Yet known GW sources

OUTLINE

- Progenitors of gravitational wave transients
- Low-latency searches
- Information for multi-messenger astronomy

MODELED (CBC) SEARCHES: MATCHED FILTERING

Please see Alex Nitz's and Alan Weinstein's talk!

UNMODELED (BURST) SEARCHES: EXCESS POWER

GW150914

GW151226

MEASURING BACKGROUNDS TO DETERMINE SIGNIFICANCE

Zero-lag Event Time slide Background event Event + background Time offset

MEASURING BACKGROUNDS TO DETERMINE SIGNIFICANCE

Q-transform

containing GW170817

of data

Please see Jess McIver's and Katerina Chatziioannou's talk!

CHECKING FOR GLITCHES AND NOISE

1. Could transient noise account for a trigger that we see? \rightarrow If yes, veto

2. Could transient noise bias the estimate of the source parameter/properties? → If yes, mitigate

ormalized amplitude Frequency (Hz) 50 amplitude Strain data Strain (×10⁻²⁰) Glitch model -1.25-0.25Time (seconds)

Time (seconds)

LIGO-Livingston raw data

500

Q-transform of a glitch at Hanford caused by an overflow in the Y-end test mass control loop

Image credits: B. P. Abbott et al., Phys. Rev. Lett. **119**, 161101 (2017)

***** Source

* Source

***** Source

× Source

A detector in a plane that is perpendicular to the incident gravitational waves has a response tensor in the reference frame of the beam splitter:

$$R^{lphaeta} = \left(egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight)$$

where the resulting response of the detector is given by:

$$\frac{\Delta L}{L} = \frac{1}{2} h_{\alpha\beta} R^{\alpha\beta}$$

Key point: gravitational waves from arbitrary directions (given by the Euler angles, φ , θ , ψ) will have different projections onto this response tensor that can be described as antenna patterns

For polarization angle ψ = 0:

A detector in a plane that is perpendicular to the incident gravitational waves has a response tensor in the reference frame of the beam splitter:

Key point: gravitational waves from arbitrary directions (given by the Euler angles, φ , θ , ψ) will have different projections onto this response tensor that can be described as antenna patterns

For polarization angle ψ = 0:

where the resulting response of the detector is given by:

$$\frac{\Delta L}{L} = \frac{1}{2} h_{\alpha\beta} R^{\alpha\beta}$$

For polarization angle = 0:

For polarization angle = 0:

LOCALIZATION W/ 3 DETECTORS ADVANCED LIGO + VIRGO

LOCALIZATION W/ 3 DETECTORS ADVANCED LIGO + VIRGO

OUTLINE

- Progenitors of gravitational wave transients
- Low-latency searches
- Information for multi-messenger astronomy

OPEN PUBLIC ALERTS

From the LSC Town Hall meeting at MIT on 3/16/18:

We (LIGO/Virgo) will release public alerts for all event candidates in which we have a reasonable confidence and feel we can stand behind.

What is an open, public alert?

For more, see:

https://gw-astronomy.org/wiki/pub/OpenLVEM/TownHallMeetings2018/what-is-an-opa.pdf

OPEN PUBLIC ALERTS

Two types of GCN alerts:

"Notices": automated, machine-readable packets. Available as VOEvent XML, binary, and plain text. Listen anonymously or pre-register for connection and delivery tracking.

"Circulars": human-readable, citable, non-refereed astronomical bulletins. Pre-register in order to receive and submit by email.

Sign-up for alerts here:

https://gw-astronomy.org/registry/pages/public/lv-em-user

For modeled (CBC) triggers:

Significance, time, GW signal classification, 3D sky position + distance

FAR >= 1/100 years: number will be stated in Circulars

FAR <= 1/100 years: will be described simply as "highly significant"

P_astro (higher latency): probability that the signal is astrophysical in origin accounting for both observed merger rate distribution and background distribution

For modeled (CBC) triggers:

Significance, time, GW signal classification, 3D sky position + distance

Simple statement of signal consistency with a BNS, BBH, or NSBH signal

ProbHasNS: probability that the less massive companion has a mass consistent with a neutron star

ProbHasRemnant (higher latency): probability that there is matter left outside of the remnant

For modeled (CBC) triggers:

Significance, time, GW signal classification, 3D sky position + distance

Simple statement of signal consistency with a BNS, BBH, or NSBH signal

ProbHasNS: probability that the less massive companion has a mass consistent with a neutron star

ProbHasRemnant (higher latency): probability that there is matter left outside of the remnant

2H EOS

For modeled (CBC) triggers:

Significance, time, GW signal classification, 3D sky position + distance

Simple statement of signal consistency with a BNS, BBH, or NSBH signal

ProbHasNS: probability that the less massive companion has a mass consistent with a neutron star

ProbHasRemnant (higher latency): probability that there is matter left outside of the remnant

2H EOS

Foucart's fitting formula

For modeled (CBC) triggers:

We will not release quantitative estimates of masses and spins

We will not release the GW strain or the waveform regressed from the data

For unmodeled (Burst) triggers:

Significance, time, 2D sky position

FAR threshold for sending Burst trigger alerts will be more restrictive, on the order of 1/10 years – 1/100 years (in comparison with 1/month – 1/year for CBC triggers)

GCN NOTICES: BASIC INFO

	CBC	Burst
IVORN	ivo://nasa.gsfc.gcn/LVC#{G, M}nnnnnn-{1, 2, 3}-{Preliminary, Initial, Update}	
Who	LIGO Scientific Collaboration and Virgo Collaboration	
What	GraceDB: {G, M}nnnnn	
Search group	CBC	Burst
Pipeline	{Gstlal, MBTA, PyCBC}	{CWB, LIB}
FAR	Estimated false alarm rate in Hz	
Network	Flag for each detector that participated	
Sky map	URL of HEALPix FITS localization file	
WhereWhen	Arrival time (UTC, ISO-8601)	

GCN NOTICES: INFERENCE (CBC ONLY)

	CBC
What	GraceDB ID: {G, M}nnnnn
Distance	a posteriori mean luminosity distance in Mpc
DistanceError	a posteriori standard deviation of luminosity distance in Mpc
ProbHasNS	Probability (0-1) that the 2 $^{\rm nd}$ mass companion has a source frame mass < 2.83 ${\rm M}_{\odot}$
ProbHasRemnant	Probability (0-1) that there is any remnant matter left outside the remnant
P_astro	Probability (0-1) that the signal is astrophysical in origin accounting for both observed merger rate distribution and background distribution

GCN CIRCULARS: GCN 21509

"A binary neutron star candidate was identified in data from the LIGO Hanford detector at gps time 1187008882.4457 (Thu Aug 17 12:41:04 GMT 2017). The signal is clearly visible in time-frequency representations of the gravitational-wave strain in data from H1. The current significance estimate of ~1/10,000 years is based on data from H1 alone. Information about this candidate is available in GraceDb here..."

GCN CIRCULARS: GCN 21513

"...Investigation of L1 data identified a noise transient from a known class of instrumental glitches during the inspiral signal. The duration of this glitch is a small fraction of a second and does not appear to affect the signal at times away from the glitch. To make an improved preliminary estimate of the sky position, we re-analyzed the data, removing the L1 noise transient at GPS time 1187008881.389 by multiplying the strain data with a Tukey window, such that the total duration of the zeroed data is 0.2 s and the total duration of the Tukey window is 1.2 s..."

GCN CIRCULARS: GCN 21513

"...An updated BAYESTAR sky map (Singer et al. 2016, ApJL 829, 15) that uses data from all three gravitational-wave observatories (H1, L1, and V1) is available for retrieval from the GraceDB page (https://gracedb.ligo.org/events/view/G298048): bayestar-HLV.fits.gz. The centroid (maximum a posteriori) sky location is R.A.=12h57m, Dec.=-17d51m. The 50% credible region spans about 9 deg2 and the 90% region about 31deg2. The luminosity distance is 40 +/- 8 Mpc (all-sky a posteriori mean +/- standard deviation). This is the preferred sky map at this time..."

Gravitational waves as emitted during a black hole merger

CONCLUSION

......Thank you for listening!
Questions?

