Calibration of the Advanced LIGO detectors

Alex L. Urban

LIGO Laboratory California Institute of Technology ON BEHALF OF THE ADVANCED LIGO CALIBRATION GROUP

> Open Data Workshop, March 25, 2018 LIGO Document <u>G1800648</u>

Outline of This Talk

- Sketch a cartoon picture of Advanced LIGO calibration
- Overview of strain calibration process
- Tracking and compensating for slow instrument changes in real-time
- Impact of these changes on astronomy

Caveats

- Advanced LIGO instruments are complicated: calibration can seem like a Rube Goldberg scheme
- I am a data analyst, not a (mechanical) engineer

Familiar Example: Optical Telescopes

main idea is to calibrate brightness (photometry)

this can be done using a catalogue of standard astronomical sources

modern telescopes use e.g. adaptive optics, but the idea is the same

Ground-based GW Observatories

Laser Interferometer Gravitational-wave Observatory

L1

H1

+ Virgo (V1; Italy), GEO (Germany), KAGRA (Japan)

THIS TALK FOCUSES ON LIGO

here we calibrate **strain**:

 $h(t) = \frac{\delta L_x(t) - \delta L_y(t)}{L}$

Signals in Strain Data: GW150914

see also Abbot et al., Phys Rev Lett 116, 061102 (2016)

Calibrated Strain

computed within ~5 s and broadcast to computing clusters received by analysis pipelines to rapidly search for signals

LIGO Calibration 101

Calibration 101: Control Loop

Calibration 101: Control Loop

Viets et al., arXiv 1710.09973 (accepted to CQG)

Inverse Sensing

converts from photodiode counts to residual length change

Calibration 101: Control Loop

Viets et al., arXiv 1710.09973 (accepted to CQG)

Actuation

converts from control signal to controlled length change

Calibration Lines

Calibration Lines

Tuyenbayev et al., CQG **34**, 015002 (2016)

can be used to track ~10% level fluctuations in scale and bandwidth this ultimately reduces systematics

Systematics and Uncertainty

Viets et al., arXiv 1710.09973 (accepted to CQG)

Systematics and Uncertainty (H1)

Cahillane et al. arXiv 1708.03023

Systematics and Uncertainty (H1)

Cahillane et al. arXiv 1708.03023

Conclusion

- Advanced LIGO calibration is good, and getting better
- Strain is calibrated with more precision and smaller systematics in O2 compared to O1
- Slow variations in the interferometer are tracked and compensated for, reducing systematic bias in calibration
- In the future we can improve yet further by compensating for small changes in detector bandwidth

Conclusion

Support for calibration line tests is now a feature in GWPy (see Duncan Macleod's tutorial)

Questions?