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OPTIMAL CONTROL 

•  H_2 optimization: 

–  Closely related to LQG; min rms 

•  H_inf optimization (Doyle et al. 1989; Doyle 1984): 

–  Minimizes pk mag of CL transfer functions. 

–  Well-suited to freq resp shaping. 

–  Handles robustness constraints explicitly  

    (main advantageous over H_2 opt) 
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•  Given plant P, find controller K s.t. 
–  Guarantees loop stability. 
–  Minimizes   

 

 

•  All we need to do is to play with the weights! 

•  If P is uncertain => \mu-synthesis. 

 

H-INF/MU OPTIMIZATION 
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FREQUENCY RESPONSE SHAPING 

•     
•  Low freq, 

•  High freq, 
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|W1S|2 + |W3T |2 = �2 (i.e., equalizing property)
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ARM ALIGNMENT CONTRL  
•    

•    
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ROBUSTNESS 

•  Small gain theorem: 
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SOFT MODE: OL & NB (CSOFT PIT) 
•  With digital subtraction of the SS torque (F=1), 
    => power independent plant. 
•  Only one set of filters needed for P_arm from 0 to 0.8 MW! 
•  Imperfect subtraction/dP-d\theta torque as uncertainties. 
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Tolerance on gain mismatch in the 
subtraction path
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SOFT MODE: ROBUSTNESS 
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30% tol on arm power drift
40% tol on sensing gain variation



CONCLUSIONS 

•  Optimal control via H-inf / mu syntheses. 
–  Only need to set the weights. 
–  Stability guaranteed; performance optimal. 
–  Can handle plant uncertainty. 

•  Arm alignment with opt. ctrl. 
–  Soft mode: combined with digital sub of SS torque. 
–  Hard mode: lowered both rms & sensing noise. 
–  Robust against perturbations. 
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EXTRA SLIDES 
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MATLAB COMMANDS  
•  H-inf synthesis:  
(https://www.mathworks.com/help/robust/ref/hinfsyn.html?searchHighlight=hinfsyn&s_tid=doc_srchtitle)  

 K = hinfsyn(G) 
 

•  Mu synthesis: 
(https://www.mathworks.com/help/robust/ref/dksyn.html?searchHighlight=dksyn&s_tid=doc_srchtitle)  

 K = dksyn(G) 

•  Where:  
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K = optimal controller, G = weight-augmented plant,
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CORRECTING FOR RADIATION 
PRESURE EFFECTS 

•  SS torque modified plant: 

•  Want a const CL torque to angle TF: 

•  Since 

•  We have:    
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Pss(Parm) = P0/ [1 + P0R (Parm)] .

Pss(Parm)/ [1 +KPss(Parm)] = P0/(1 +K0P0),

or Sss(Parm) = 1/ [1 +KPss(Parm)]

= [1 + P0R(Parm)]S0

W1(Parm)Sss(Parm) ' � ' W1(0)S0

W1(Parm) =
W1(0)

1 + P0R(Parm)



NOISE INPUT 
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Disp noise input:

Sensing noise:
Flat 5e-15 rad/rtHz for 
Both soft and hard modes



MODEL FOR dP-d\theta 
•  Radiation torque:  

•  =>  

•  y(dc): DC beam offcentering; or suspension point offcentering (cS pitch only)  

•  With DC spot offset: 

 

•  =>  
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