Optimal and robust control of the arm alignment with mu-synthesis

Hang Yu and Denis Martynov

GWADW 2018

OPTIMAL CONTROL

- H_2 optimization:
 - Closely related to LQG; min rms
- *H_inf optimization* (Doyle et al. 1989; Doyle 1984):
 - Minimizes pk mag of CL transfer functions.
 - Well-suited to freq resp shaping.
 - Handles robustness constraints explicitly

(main advantageous over H_2 opt)

H-INF/MU OPTIMIZATION

- Given plant *P*, find controller *K* s.t.
 - Guarantees loop stability.
 - Minimizes $||H(s)||_{\infty}$.

$$\begin{bmatrix} z_1 \\ z_3 \end{bmatrix} = Hw = \begin{bmatrix} W_1 S \\ W_3 T \end{bmatrix} w$$
$$S = \frac{1}{1 + KP} \quad T = \frac{KP}{1 + KP}$$

- All we need to do is to play with the weights!
- If *P* is uncertain => \mu-synthesis.

FREQUENCY RESPONSE SHAPING

- $|W_1S|^2 + |W_3T|^2 = \gamma^2$ (i.e., equalizing property) $\gamma = \mathcal{O}(1)$
- Low freq, $|W_1S| \simeq \gamma; S \simeq 1/KP,$ $\implies |W_1| \simeq |KP|.$
- High freq,

$$|W_3T| \simeq \gamma; \ T \simeq KP,$$

 $\implies |W_3| \simeq 1/|KP|$

ARM ALIGNMENT CONTRL

• $P_0 =$ free pendulum torque to angle TF, $R = -\frac{2P_{\text{arm}}}{c}\frac{dy}{d\theta},$ F = switch to turn on/off digital sub., K = control servo from μ -synthesis.

•
$$OL = [(1 - F)R + K]P_0,$$

 $\delta\theta^{(\text{disp})} = \frac{P_0}{1 + OL}\delta\tau_0^{(\text{disp})},$
 $\delta\theta^{(\text{sens})} = \frac{-(K - FR)}{1 + OL}\delta\theta_0^{(\text{sens})}$

Massachusetts Institute of Technology

ROBUSTNESS

• Small gain theorem:

For a given ΔH , Sufficient condition for stability : $||H\Delta H||_{\infty} < 1$, or $||\Delta H||_{\infty} < 1/||H||_{\infty}$

$$H = 1/[1 + (R - FR + K)P_0]$$

$$R$$

$$F - R$$

$$P_0$$

$$K$$

SOFT MODE: OL & NB (CSOFT PIT)

• With digital subtraction of the SS torque (F=1),

=> power independent plant.

- Only one set of filters needed for *P_arm* from 0 to 0.8 MW!
- Imperfect subtraction/dP-d\theta torque as uncertainties.

SOFT MODE: ROBUSTNESS

Massachusetts Institute of Technology

HARD MODE: P_arm=0.75 MW

Massachusetts Institute of Technology

HARD MODE: ROBUSTNESS

CONCLUSIONS

- Optimal control via H-inf / mu syntheses.
 - Only need to set the weights.
 - Stability guaranteed; performance optimal.
 - Can handle plant uncertainty.
- Arm alignment with opt. ctrl.
 - Soft mode: combined with digital sub of SS torque.
 - Hard mode: lowered both rms & sensing noise.
 - Robust against perturbations.

EXTRA SLIDES

MATLAB COMMANDS

• H-inf synthesis:

 $(https://www.mathworks.com/help/robust/ref/hinfsyn.html?searchHighlight=hinfsyn&s_tid=doc_srchtitle)$

K = hinfsyn(G)

• Mu synthesis:

 $(https://www.mathworks.com/help/robust/ref/dksyn.html?searchHighlight=dksyn&s_tid=doc_srchtitle)$

K = dksyn(G)

• Where: K = optimal controller, G = weight-augmented plant,

$$G = \begin{bmatrix} W_1, & W_1 P \\ 0, & W_3 P \\ -I, & -P \end{bmatrix}, \text{ with } P = \text{the original plant.}$$

CORRECTING FOR RADIATION PRESURE EFFECTS

- SS torque modified plant: $P_{\rm ss}(P_{\rm arm}) = P_0 / [1 + P_0 R (P_{\rm arm})].$
- Want a const CL torque to angle TF:

$$\begin{split} P_{\rm ss}(P_{\rm arm}) / \left[1 + K P_{\rm ss}(P_{\rm arm}) \right] &= P_0 / (1 + K_0 P_0), \\ \text{or } S_{\rm ss}(P_{\rm arm}) &= 1 / \left[1 + K P_{\rm ss}(P_{\rm arm}) \right] \\ &= \left[1 + P_0 R(P_{\rm arm}) \right] S_0 \end{split}$$

• Since $W_1(P_{\text{arm}})S_{\text{ss}}(P_{\text{arm}}) \simeq \gamma \simeq W_1(0)S_0$

• We have:
$$W_1(P_{\text{arm}}) = \frac{W_1}{1 + P_0 R}$$

()

 P_{arm}

NOISE INPUT

Massachusetts Institute of Technology

MODEL FOR dP-dtheta

- Radiation torque: $\tau = \frac{2P_{\text{arm}}}{c}y$ • $\Rightarrow \frac{d\tau}{d\theta}(f) = \frac{2P_{\text{arm}}}{c} \left[\frac{dy}{d\theta} + y(\text{dc}) \frac{d\text{RIN}}{d\theta}(f) \right]$ Sidles-Sigg. $dP/d\theta$
- y(dc): DC beam offcentering; or suspension point offcentering (cS pitch only)
- With DC spot offset: $\frac{d\text{RIN}}{d(\theta/1\text{rad})}\Big|_{\text{cS}}(f) \simeq \frac{2.6 \times 10^5}{1 + i(f/f_+)} \begin{bmatrix} y_{\text{cS}}(\text{dc}) \\ 0.1 \text{ mm} \end{bmatrix}$ (Note: dRIN can be either positive or $\simeq \frac{5.0 \times 10^4}{1 + i(f/f_{\perp})} \begin{bmatrix} \frac{\theta_{\rm cS}({\rm dc})}{10 \, {\rm nrad}} \end{bmatrix} \quad \begin{array}{c} \text{negative depending on the dc} \\ \text{offset} \end{array}$

• =>
$$\left. \frac{d\theta}{d\theta} \right|_{dP/d\theta} (f) = -\frac{2P_{\rm arm}}{c} \frac{d\text{RIN}}{d\theta} (f) \frac{L2P(f)}{1 + G_{\rm 3rd\,ISS}(f)}$$

lassachusetts Institute of Technology