

Seismic Control during Earthquakes: a Review of the proposed scheme

G1800399, March 20, 2018

Brian Lantz, Sebastien Biscans, Michael Coughlin, Nikhil Mukund, Arnaud Pelé, Hugh Radkins, Jim Warner, and the rest of the SEI team

Thinking about Controls

New control scheme for use during teleseismic earthquakes

Installation is very soon. (We've been talking about this for a while)

Discuss at CSWG because it uses several control choices not used before.

- Routinely Change control based on predictions of the future. (done a few times in past)
- 2. Design for isolation below 100 mHz.
- Do not isolate to minimize the inertial motion. Allow system to ride on the common-mode, and only isolate on the local differential.

LSC Recall - typical control condition

T240X as disp, loud v. quiet

LSC Recall - typical control condition

T240X as disp, loud v. quiet

Use the ground motion signal for low freq. control (Sensor Correction)

- Use the signals above ~ 100 mHz to isolate against the microseism
- Filter out signals below ~30 mHz to not couple <u>measured</u> ground tilt.
- Transition band has amplification (waterbed effect). OK if band is quiet.

Difference #1 BRS Improves measured motion

In this case, the BLRMS hits ~ 3 microns/sec

IFO loses ~ 4 hours of Observation time.

Nothing special about this event, chosen because I had to time to follow up

Most of the motion is Common-mode

Motion estimates

LS(

New Sensor Correction

LS

Pick a shape that works better for the EQ motion

Motion estimates

LS(

Sensor Correction

Sensor Correction

Sensor Correction

RMS comparisons

Nikhil amplitude updates

LHO 01-02 (Percentage Captured: 90.00)

EQ traces, M6.9 Valparaiso

EQ traces, M6.9 Valparaiso

Modeled perf. now

LSC

399 21

LSC Removing CM reduces drive lev

Earthquake impact for O2

Final thoughts

- We should be able to significantly improve robustness against Earthquakes.
- Part the benefit comes from having new tools (BRS, Seismon)
- Part of the benefit comes from changing the control flow/ isolation performance during observing time based on changing environmental conditions.
- Part of the benefit comes from controlling the seismic system in a non-local way, controlling relative motion instead of controlling the absolute motion.
- Implementation should be complete at LHO by April May.

Mode-switch transients

What happens if you switch control modes late, and the EQ has already arrived?

transient e-switch PoΣ

UNIVERSITY LLCO GROUP

mode switch transients

Nikhil amplitude updates

2017

1

104

1455

2016

0

16

130

1550

Earthquake Hazards Program

← Earthquakes

science for a changing world

Earthquake Statistics

Latest Earthquakes

Hazards

Learn

Monitoring

Research

Data & Products

Worldwide Earthquakes 2000-2016

Earthquake Lists, Maps & Statistics	td>6																
Search Earthquake Catalog	Magnitude	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Real-time Notifications, Feeds & Web Services	8.0+	1	1	0	1	2	1	2	4	0	1	1	1	2	2	1	1
Information by Region	7-7.9	14	15	13	14	14	10	9	14	12	16	23	19	12	17	11	18
ANSS ComCat Documentation Errata for Latest Earthquakes	6-6.9	146	121	127	140	141	140	142	178	168	144	150	185	108	123	143	127
	5-5.9	1344	1224	1201	1203	1515	1693	1712	2074	1768	1896	2209	2276	1401	1453	1574	1419
Farthquakes	Estimated Deaths	231	21357	1685	33819	298101	87992	6605	708	88708	1790	226050	21942	689	1572	756	9624

Mannanger

United States Earthquakes 2000-2012

Magnitude	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8+	0	0	0	0	0	0	0	0	0	0	0	0	0
7-7.9	0	1	1	2	0	1	0	1	0	0	1	1	0
6-6.9	6	5	4	7	2	4	7	9	9	4	8	3	5
5-5.9	63	41	63	54	25	47	51	72	85	58	89	51	27

