Penn State Theory Seminar, March 2, 2018

The Future of Ground-based Gravitational-wave Detectors

David Reitze LIGO Laboratory California Institute of Technology

LIGO Hanford Observatory

LIGO-G1800292-v1

Outline

- Why Make Bigger and Better Detectors?
- Improving Advanced LIGO: A+
- Exploiting the Existing LIGO Facility Limits: Voyager
- Future '3G' Facilities: Cosmic Explorer and Einstein Telescope

LIGO Some of the Questions That Gravitational Waves Can Answer

Outstanding Questions in Fundamental Physics

- » Is General Relativity the correct theory of gravity?
- » How does matter behave under extreme conditions?
- » No Hair Theorem: Are black holes truly bald?

Outstanding Questions in Astrophysics, Astronomy, Cosmology

- » Do compact binary mergers cause GRBs?
- *» What is the supernova mechanism in core-collapse of massive stars?*
- » How many low mass black holes are there in the universe?
- » Do intermediate mass black holes exist?
- » How bumpy are neutron stars?
- » Can we observe populations of weak gravitational wave sources?
- » Can binary inspirals be used as "standard sirens" to measure the local Hubble parameter?
- » Are LIGO/Virgo's binary black holes a component of Dark Matter?
- » Do Cosmic Strings Exist?

Right ascension [hours]

LIGO-G1800292

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned LIGO India

KAGRA

Gravitational Wave Observatories

GEO600

VIRGO

LIGO Observing Plans for the Coming 5 Years

Abbott, et al., "Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA", <u>https://arxiv.org/abs/1304.0670</u>

LIGO-G1800292

Gravitational-wave Science is Sensitivity Driven

LIGO Gravita

Gravitational-wave Science is Sensitivity Driven

2) *Many sources require higher SNR to uncover new astrophysics:*

- tidal disruption in BNS mergers
- tests of alternative theories of gravity
- Black hole ringdowns
- Stochastic background
- Isolated neutron stars
- Galactic supernova

Example: Probing the Neutron Star Equation of State

Improving LIGO: A+

A+: a Mid-Life Enhancement for Advanced LIGO

Near term: 'A+', a mid-scale upgrade of Advanced LIGO

LIGO

 Improvements across all bands

 Projected time scale for A+ operation: 2023 -2025

Comoving Ranges: NSNS 1.4/1.4 M_{\odot} and BHBH 30/30 M_{\odot}

The Rationale for A+?

- A+ is an incremental upgrade to aLIGO that can happen in the next 5-7 years
- A+ leverages existing technology and infrastructure, with minimal new investment, and moderate risk
- Target improvement: factor of 1.75* increase in range over aLIGO

→ A factor of ~ 5 greater CBC event rate

- A+ is a stepping stone to 3G detector technology
- Can be observing within 5 years (possibly late 2022)
- "Scientific breakeven" within 1/2 year of operation
- Incremental cost: *a small increment of the aLIGO cost*

*BBH 30/30 M_©: 1.87x *BNS 1.4/1.4 M_©: 1.7x

Slide inspiration: Mike Zucker, LIGO Laboratory

Key A+ Upgrades

LIGO-G180025∠

Squeezing: Reducing Quantum Noise

Electromagnetic fields are quantized:

LIGO

 $\hat{E} = \hat{X}_1 \cos \omega t + i \hat{X}_2 \sin \omega t$

vacuum state:

H. P. Yuen, Phys. Rev. A13, 2226 (1976) C. M. Caves, Phys. Rev. D26, 1817 (1982) Wu, Kimble, Hall, Wu, PRL (1986)

Ligo The Best of Both Worlds: Frequency Dependent Squeezing

Thermal Noise in Optical Coatings

- Simple picture: kT of energy per mechanical mode, viscous damping
- For coating dominated noise and structural damping:

LIGO

coating thickness $S_{x}(f,T) \approx \frac{2k_{B}T}{\pi^{2}f} \frac{d}{w^{2}Y} \overline{\phi} \left(\frac{Y'}{Y} + \frac{Y}{Y'}\right)$ beam radius $\phi_{\text{TiO}_{2}:\text{Ta}_{2}\text{O}_{5}} = 2 \times 10^{-4}$ $\phi_{\text{SiO}_{2}} = 4 \times 10^{-5}$

Compare: Bulk Silica $\phi \sim 10^{-6}$ -10⁻⁸

LIGO-G1800292

Low-frequency losses in amorphous dielectrics

- Loss mechanism: conventionally associated with low energy excitations (LEEs)
 - » conceptualized as two-level systems (TLS); Distribution of TLSs arising from disordered structure
 - » Simple physical mechanism: bond flopping in amorphous materials, e.g. SiO₂

Figures: B.S. Lunin

LIGO-G1800292

Routes to Improved Coatings with Low Thermal Noise

Goal: 2X – 4X reduction in coating thermal noise

Ultrastable glasses

LIGO

- Glasses prepared by physical vapor deposition show extraordinary stability
 - slower cooling liquid reaches lower energy states
- simulations suggest surface liquid layer has orders of **>>** magnitude higher mobility than caged particles in solids
- Internal friction of films deposited at high temperatures T_s

(b)

 10^{2}

10⁰

10¹

Temperature (K)

- very different from film annealed at same temperature
- $\phi \sim 2 \times 10^{-6} \text{ vs} \sim 10^{-4}$ >>

al, Phys. Rev. Lett. annealed 350°C 113, 025503 (2014) Challenge: deposition temperatures, T_s extendable to amorphous oxides? Scalable to commercial coating methods?

X. Liu, F. Hellman, et

Routes to Improved Coatings with Low Thermal Noise

• Goal: 2X – 4X reduction in coating thermal noise

Crystalline coatings

LIGO

- » molecular beam epitaxy to generate crystalline GaAs/AlGaAs multilayer
- » mirror disc lithography and etch, substrate removal, and direct bonding on substrate

Challenge: i) Scalability Current state-of-the-art: 75 mm aperture. LIGO needs: > 300 mm (Cost!) ii) Coating uniformity: 10⁻⁴ (IBS) vs 10⁻² (crystalline)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, *Nature Photonics* (2013)

Preliminary A+ Schedule

Possible project start date in early 2020 (paced by funding)
Installation start date early 2022

Exploiting the LIGO Observatory Facility Limits: LIGO Voyager

LIGO Voyager Concept

Voyager Key Technologies

LIGO

- » <u>Silicon Mirrors</u>: 200 kg, 45 cm dia., mCZ process
- » <u>Mirror Coatings</u>: α-Si/SiO₂ (α-Si: ~lossless thin film)
- » <u>Cryogenics</u>: 123 K (zero CTE), radiative (<u>non-contact</u>) cooling
- » <u>Lasers</u> (2000 nm): P~ 180 W, P_{ARM} ~ 2800 kW
- » <u>Wavefront Compensation</u>: thermally adjustable lenses only (no actuation of test mass)
- » Photodiode Quantum Efficiency: 80 -> 99% for 2 micron

(No change to Advanced LIGO seismic isolation system!)

LIGO Laboratory

21

LIGO Voyager Conceptual Design LIGO Sensitivity -----Quantum: $P_{in} = 138 \text{ W}; \zeta_{sqz} = 10 \text{ dB}$ Seismic: aLIGO 10^{-22} Newtonian Gravity: 10x subtraction — Susp Thermal: 123 K Si blades and ribbons - Coat Brown: α -Si:SiO₂ $\Phi_{coat} = 5.5e-05$ Coating ThermoOptic: $\omega_{\text{beam}} = 5.9 \ 8.4 \ \text{cm}$ Sub Brown: Si mirror (T = 123 K, $m_{\text{mirror}} = 200 \text{ kg}$) Residual Gas: 3 nTorr of H₂ Sub Thermo-Refractive Strain $1/{H_z}$ 10^{-53} Carrier Density: 10¹³/cm³ Total Adv LIGO A+ 10^{-24} 1010010002 Frequency [Hz]

LIGU-61800292

Voyager Reach for Compact Binary Mergers

LIGO-G1800292

Technology: 2 Micron Lasers

 2 μm Tm:YAG, Ho:YAG commercial lasers exist

- » low power/low noise, or high power/ high noise
- Challenge is to make high power/low noise
- Development programs underway by several gravitational wave groups
 - » Decade long program envisioned

Technology: 200 kg Silicon Mirror

- Main challenges are i) mirror size, ii) absorption
 - » Goal: absorbed Power < 3 W;</p>
 - » 3 ppm/cm (FZ): max diameter ~ 20 cm
 - » mCZ from SEH can get
 - samples acquired, absorption measurements done (< 4 ppm)
 - » SEH Japan will make 45 cm diameter mCZ
 - » how to sequence all of the annealing? Different processes for substrates, coatings.

Slide inspiration: Rana Adhikari, LIGO Laboratory

LIGO Laboratory

Technology: Cryogenics (Not Really...)

Cooling needed to (only!)123 K

- Non-contact, radiative cooling
- No cryogens in vacuum
- Only cooling lower 2 stages of mirror suspension
- ~5 W cooling required
- An engineering effort
 - » Designs being looked at by several LSC groups

Future 3G Facilities: Einstein Telescope and Cosmic Explorer

LIGO

B. Sathyaprakash, Dawn III Workshop, https://wiki.ligo.org/LSC/LIGOworkshop2017/WebHome

Making the 3G Science Case

LIGO-G1800292

(Very) Conceptual Timeline For New Observatories

LSC Instrument Science White Paper 2017-2018, LIGO-T1700231–v2

LIGO-G1800292

Einstein Telescope (Europe)

- Third-generation GW
 observatory
- Target sensitivity for Einstein telescope is a factor of ten better in comparison to current advanced detectors
- 10 km long, Underground
- Xylophone configuration,
 6 interferometers

Formal Design Study completed in 2011: http://www.et-gw.eu/etdsdocument

ET Configuration

Start with a single xylophone detector.

ET EINSTEIN TELESCOPE

> Add second Xylophone detector to fully resolve polarisation.

Add third Xylophone detector for redundancy and nullstreams.

Allows upgrading one detector while keeping full functionality of observatory and minimize down time

LIGO Einstein Telescope Conceptual Design Sensitivity

http://www.et-gw.eu/index.php/etsensitivities

Cosmic Explorer (US)

• Third-generation GW observatory

LIGO

- Target sensitivity a factor of > 10 improvement in comparison to current advanced detectors
- Above ground, 40 km arm length, L configuration

Formal Design Study: not yet, but proposal under development (M. Evans, MIT, PI

Cosmic Explorer

Surface, right-angle, 40km on a side, 1 interferometer

mm

Cosmic Explorer Conceptual Design Sensitivity

LIGO-G1800292

ET and CE Have Cosmological Reach

LIGO-G1800292

How to Get To A 3rd Generation Observatory?

GWIC (Gravitational Wave International Committee)

Body formed in 1997 to facilitate international collaboration and cooperation in the construction, operation and use of the major gravitational wave detection facilities world-wide

- Affiliated with the International Union of Pure and Applied Physics
 - » From 1999 until 2011, GWIC was recognized as a subpanel of PaNAGIC (IUPAP WG.4).
 - In 2011, GWIC was accepted by IUPAP as a separate Working Group (WG.11).

Links to the:

International Astronomical Union (IAU)

International Society for General Relativity and Gravitation (ISGRG)

LIGO-G1800292

GWIC's role in coordinating 3G detector development

GWIC Subcommittee on Third Generation Groundbased Detectors

GWIC subcommittee purpose and charge:

With the recent first detections of gravitational waves by LIGO and Virgo, it is both timely and appropriate to begin seriously planning for a network of future gravitational-wave observatories, capable of extending the reach of detections well beyond that currently achievable with second generation instruments.

The GWIC Subcommittee on Third Generation Ground-based Detectors is tasked with examining the path to a future network of observatories/facilities

Web Site https://gwic.ligo.org/3Gsubcomm/

LIGO-G1800292

Summary: The Future for Gravitational-wave Astronomy is Bright

- Ground-based GW detectors will continue to advance in sensitivity in the coming decades
- Near term: A+, an Advanced LIGO upgrade
- Medium term: Voyager, uses existing facilities but with new technologies
- Long term: Einstein Telescope and Cosmic Explorer, new facilities

With material from (and thanks to): Rana Adhikari, Matt Evans, Mike Zucker, Harald Lueck, John Miller, B. Sathyaprakash

Caltech