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The GW world-wide network

* The present:

— Advanced LIGO, Advanced Virgo: 2"d generation detectors (2G)
* The near future:

— Kagra: 2G detector, pioneering 3G technologies

— LIGO-INDIA

e The future:

— Improved detectors in current facilities (A+, Voyager, ...):
* 3G technologies in 2G facilities = 2.5G
* Length and shape constrained by existing facilities

— New detectors in new facilities (3G)
* Einstein Telescope concept, Cosmic Explorer concept
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LIGO-VIRGO-KAGRA Observing plan

https://arxiv.org/abs/1304.0670
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Plausible projections for L1 strain noise in O3
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Can we build more sensitive detectors?
YES, we can.

* More of the same, but even better: more power,
bigger/heavier masses, lower loss mirror coatings,
better suspensions, ...

* New technologies: squeezed light, alternative
wavelengths + cryogenics, alternative optical
configurations, ..

 Make it longer: take advantage of scaling of
noises with arm length

* Go Underground: access low frequencies
* New concepts: triangular shape, xylophone, ..
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Vision beyond Advanced LIGO

* A+:nearterm improvement to Advanced LIGO
— Lower mechanical loss mirror coatings, frequency
dependent squeezing

= proposal to the NSF in preparation
= could be operational by mid-22

* Voyager: same Advanced LIGO facility, possibly
2 um wavelength, modest cryogenics 120K,

= world-wide R&D in progress
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Einstein Telescope

Hild, Freise, Chelkawskd 15.11.2007 |
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Underground, triangular, 10km on a side, 6 interferometers



Concept Roadmap
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Now Early 2020s Late 2020s Mid 2030s
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Example of curve progression
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Uncontroversial goal of the future
world-wide GW network:
“maximize the science”

« BUT...what does it mean exactly?

« GWIC 3G https://gwic.ligo.org/3Gsubcomm/

« How can we condense the exciting physics that has
been described here in a set of relevant metrics to
inform the design of the future GW network?
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Network Metrics

* How to measure the performance of a

network of GW detectors?
— BBH Range?
— Median sky localization for BNS sources?
— High frequency sensitivity?
e How do each of these metrics connect to our
science goals?
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Metrics: not so simple..

* For a given source, maximizing the number of
events might not be what we want:

— |s the science based on populations, or can we
cherry pick the best events?

* Localization only important for close, bright

events (don’t need BNS localization for z>1)

e Cost (both for construction and operation) is a
fundamental driver: how can we compare
“cost-equivalent” configurations?
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Some Science Targets

Kilonova, Afterglow, ... Multi-messenger
physics with BNS events

NS EOS, Merger and Nuclear Physics
Testing-GR

Hubble, Dark Energy, ... H(z)

Populations
— Metal Production over Cosmic Time - BNS

— Cosmic Dawn - POP Il
— Inflation - Primordial Black Holes

Non CBC Sources (CCSN, Strings, ...)
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Some Science Targets

* Kilonova, Afterglow, ... Multi-messenger
physics with BNS events Low-z Localization

* NS EOS, Merger and Nuclear Physics «hz sensitivity

* Testing-GR _©PC SR

GW Polarization Low-z Localization

 Hubble, Dark Energy, ... H(z) «Hz sensitivity

e Populations CBC SR
— Metal Production over Cosmic Time - BNS
. CBC SNR
— Cosmic Dawn - POP |l High-z Mass and Distance Estimation

— Inflation - Primordial Black Holes
* Non CBC Sources (CCSN, Strings, ...) iz sensitivity
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3G Mentality

 With 3G detectors we will have ~10° of events
each year, mostly fromz~ 2 or 3

* Population based science won’t need good sky
localization
— Mean and median values are meaningful

* Precision test will be done with the nearby
high-SNR events
— Only best ~10 events per year will be useful
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Previous work on network design

Raffai+ 2013, Hu+ 2015:

e Numerically optimize detector placement for 2G (aLIGO) and 3G (ET)

networks
® Figures of merit: polarization sensitivity, sky localization, and chirp mass

reconstruction
Vitale+ 2016:

® Evaluate CBC parameter estimation capabilities for 3G networks (CE, ET)

Mills+ 2017:

® Evaluate localization capabilities for 2G, 3G, and heterogeneous networks
(Voyager, CE, ET)
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1% horizon for 3G networks
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Rough Cost Estimation

® \We have cost estimates based on LIGO, ET and LIGO-India experience and
costing

® These are not accurate, since costs are inevitably driven by site specific
factors and market prices which change with time, but they can be used as a
means of making cost-based network optimizations

e We account for:

number of interferometers (1 xylophone ET detector is 2 ifos)

Ltube, Dtube = length of tube [km] with diameter Dtube [m]

Lsurface = length of surface grading [km] (80 for CE)

Lflat, Nflat = length and number of flat sections [km] (40, 2 for CE)

Ltunnel = lentgh of tunnel [km] (30 for ET)

Hdepth = depth of tunnel [m] (200 for ET)

Ncavern = major halls (3 for ET triangle)

O O O O 0O 0O O

February 7, 2018 PAX2018 Penn State )



- l ’
_:l.‘ ‘,,.I(T"k'. !
s

‘\.i »*’.‘”n ,A




From Salvatore Vitale

* AGW150914-like event will have SNR~2000 in
a Cosmic Explorer facility.

* How well can we do parameter estimation?




BBH and BNS from the entire Universe!

Horizon and 10, 50 and 75 % confidence levels
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Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors.
Vitale, Evans (2017) PRD 95, 064052

Observing primordial gravitational waves below the binary-black-hole-produced stochastic background
Regimbau, Evans, ..., Vitale, (2017) PRL 118, 151105







COSMIC EXPLORER:
a 40km facility with new coatings and squeezing
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Exploring the sensitivity of next generation gravitational wave

detectors (2017) CQG 34, 044001
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Over the next 20 years...

Spectroscopy of Kerr black holes with Earth- and space-based interferometers
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P = PGLRT
“high SNR”
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Close BBH Mergers will have high SNR

Binary Black Hole SNR vs. Redshift

== Target (fig 1)
= \Nideband (fig 2) ||
Pessimistic (fig 3)
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arX1v:1605.09286v2 [gr-qc] 5 Sep 2016 3
M1 model

“detectable”
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Hubble Constant (science goal weight? Not high?)

(Galaxy associations with localization volume
* Requires localization of 10s of sources
 Limited to low redshifts by galaxy catalogs
« Mass distribution
« Just needs many sources
«  BNS Spectroscopy
« Needs high frequency sensitivity
*  EM counterparts
*  Needs localization of local sources

BBH matter distribution vs. BAO
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