Virgo Coating R&D

Geppo Cagnoli - LMA for the VCR&D

The 2 fundamental axes of coating research

VCR&D active research lines

Loss measurements on the materials and HR coatings used in the Advanced detectors

• The article of Flaminio et al. (2010) has been updated by the Granata et al. (2016)

PHYSICAL REVIEW D 93, 012007 (2016)

Mechanical loss in state-of-the-art amorphous optical coatings

Massimo Granata,^{1,*} Emeline Saracco,^{1,†} Nazario Morgado,^{1,‡} Alix Cajgfinger,¹ Gianpietro Cagnoli,^{1,2} Jérôme Degallaix,¹ Vincent Dolique,¹ Danièle Forest,¹ Janyce Franc,^{1,§} Christophe Michel,¹ Laurent Pinard,¹ and Raffaele Flaminio^{1,3}

MASSIMO GRANATA et al.

PHYSICAL REVIEW D 93, 012007 (2016)

From Granata et al. (2016) Metrology problems

_		sample ^a	coating	Ν	r	k	ϕ_k^{cs}	D	ϕ_{e}	$\langle \phi_m angle$	<i>R</i> [m]
	Single vs	H-5	HR	18	0.35	0	0.186	12.2	1.3 ± 0.2	2.2 ± 0.1	
			a reph	10/10		1	0.190		~		
	double sided	H-5	$2 \times HR^{\circ}$	18/18	0.34	0	0.281	6.3	1.2 ± 0.2	1.7 ± 0.1	00
						4	0.291			\frown	
	deposition	HTM-A108	HR	38	0.56	0	0.443	6.5	1.5 ± 0.2	2.7 ± 0.1	-0.21 ± 0.01
						2	0.449		1		
		HTM-A108	$2\times \text{HR}^{\text{b}}$	38/38	0.56	0	0.726	3.2	1.5 ± 0.2	2.3 ± 0.1	-0.30 ± 0.01
						1	0.745				
						3	0.754				
						4	0.778				

GeNS vs Cantilevers

TABLE VI. Specifications and results of fus-d-silica disks coated with stacks: sample, coating design, number of coating layers *N*, thickness ratio *r*, mode order^a $(r, a)_k$, simulated dilution factor D_k , expected coating loss ϕ_e , and measured coating loss $\langle \phi_m \rangle$. Loss angles are given in units of 10^{-4} rad.

Sample	Coating	N	r	$(r, a)_k$	D_k	ϕ_{e}	$\langle \phi \rangle$	
39	HR	18	0.32	$(0,2)_1 (0,3)_4$	237.1 237.6	1.2 ± 0.2	1.5 ± 0.1) /
				$(0,5)_{10} (1,2)_{12}$	240.3 236.0			
38	HR	38	0.56	$(0, 6)_{15}$ $(0, 2)_1$	242.2 112.5	1.5 ± 0.2	2.1 ± 0.1	
				$(0,3)_4$ $(0,5)_{10}$	112.6 113.7		\smile	
				$(1,2)_{12}$ $(0,6)_{15}$	111.1 114.6			

From Granata et al. (2016) Interfaces or metrology problems?

FIG. 8. Mechanical loss of monolayers of silica (blue) and titania-doped tantala (red) as a function of the layer thickness, as measured on fused-silica cantilever blades coated on one (open circles) or on both surfaces (dots).

• FIG. 9. Excess loss Δ of coating stacks deposited on cantilever blades, as a function of the number N of layers in the stack. Excess loss is observed, in violation of Eq. (3).

Virgo Coating R&D

Metrology again

• Edge losses are observed in coatings too

- Effects on:
 - Frequency dependent loss
 - Dilatation and shear loss angles

Direct measurements of thermal noise

• Quadrature Phase Interferometer (developed by L. Bellon of LPENS-Lyon)

Open questions and results

(details can be found here: <u>LIGO-G1701598-v1</u> <u>https://dcc.ligo.org/DocDB/0144/G1701598/001/LVC170</u> <u>8_Granata_LMAcoatings.pdf</u>)

Silica vs Tantala: annealing duration

 $T_a = 500^{\circ} C$

Silica vs Tantala: annealing temperature

∆t = 10 h

Silica vs Tantala: deposition parameters

New materials: Nb2O5

- $n_{Nb2O5} = 2.18 > n_{Ta2O5} = 2.01$ @ 1064 nm [DIBS]
- directly scalable to the Grand Coater (large mirrors)

New materials: Si3N4 (by CVD)

optical absorption $k \ge 1e-5$

Virgo Coating R&D

New materials: Si3N4 (by IBS)

New materials: Si3N4 (by IBS)

- potentially low optical loss
- scalable to the Grand Coater (large mirrors)

Structure loss correlation

Granata & al., arXiv:1706.02928

Final comments

• Time to the next mirror upgrade is short

- We should not duplicate the efforts
- The CCR and VCR&D paths should not diverge
- Collaboration examples
 - GeNS from LMA to Caltech
 - Direct measurements of thermal noise at MIT

Coaters and Metrology at LMA

Ion-beam sputtering (IBS)

irao

Virgo Coating R&D

Metrology – optics

- scattering
- surface defects
- wavefront
- absorption [ambient/cryogenic]
- refractive index spectrophotometry spectr. ellipsometry [@ Genova]

photos: C. Fresillon - photothèque CNRS

Metrology – mechanics

Gentle Nodal Suspension (GeNS)

- clamp-free
- high repeatability
- measure of

dilution factor mechanical loss elastic constants

Cesarini & al, Rev. Sci. Instrum. 80 (2009) Cesarini & al, Class. Quantum Grav. 27 (2010) Granata & al, Arch. Metall. Mat. 60 (2015) Granata & al, Phys. Rev. D 93 (2016)

