Advanced LIGO Core Optics

Specifications

- Measurements
 - Fizeau Metrology
 - Reflectivity, Transmission, Scatter and Absorption
- Problems Along the Way
- Simulation and Modeling
- A Path to Production for A+
- Manufacturing and Timetable

Test Mass Specifications

- Radius of Curvature ~2000 m, match ± 3 m
- RMS figure error

- » Central 300 mm $\sigma_{\rm rms}$ < 2.5 nm
- » Central 160 mm $\sigma_{\rm rms}$ < 0.3 nm
- RMS microroughness
 - » 4 Locations $\sigma_{\rm rms}$ < 0.16 nm
- R > 0.999995, T < 5 PPM
- Total Cavity Loss < 75 ppm

Round Trip Cavity loss 2 surfaces (ppm)	Cavity Budget (ppm)	Actual loss (modeled) based on average of completed pieces in 2013 (ppm)
Microroughness scatter (>1/mm)	8	2.2 Per mirror
Defects (Polish, Coating, Contamination)	26	10 per mirror includes polish and coating
Coating Absorption	1	0.3 per mirror
Surface Figure Error & Diffraction	24	16.2
ETM Transmission	5	4.2
Total (required < 75 ppm)	64	45.4

CSIRO

mastered uniformity and AR coating reflectivity but struggled with absorption

300 mm diameter, <u>same color scale</u>, Power subtracted (Δ 3.5nm)

Uncoated (m-Zygo EPO) 11.4 nm PV 1.7 nm rms

Coated at CSIRO (m-LIGO) 9.8 nm PV 1.6 nm rms

Applied Optics

OSA

Mark Gross, Svetlana Dligatch, and Anatoli Chtanov, "Optimization of coating uniformity in an ion beam sputtering **NSF Review of LIGO Operations** 2079 2023 modified planetary rotation method," Appl. Opt. 50, C316-C320 (2011)

LMA Mastered absorption and scatter but struggled with uniformity and AR reflectivity

12 nm PV Feb 2011

LIGO

11 nm PV

4 nm PV

5 nm PV Mar 2015

160 mm diameter

Specification – no change in Zernike coefficient > 0.5 nm

When is it Good Enough? Ask Hiro

NSF Review of LIGO Operations 2019-2023

LIGO Optical Static Interferometer Simulation (SIS)

- FFT Propagation
- Coupled optical cavities
- Multiple frequencies
- Edge diffraction and apertures
- Real mirror figure errors

Problems Along the Way

Fizeau Metrology

- 40 cm
- λ/2000
- 1064 nm

0.05 nm rms 30 mm Φ

Reflectivity, Transmission, Scattered Light, Absorption

- Reflectivity
- Transmission
- Scattered light
- Absorption

A path to production for A+

- Pathfinder Competitive demonstration of all specifications on a full size optic by a vendor with full scale coating capacity
 - Competitive bid ~ 3 months
 - Selection and kickoff, review performance specifications ~ 1 month
 - Development
 - Phase 1: Demonstration on small pieces
 - If successful proceed to Phase 2
 - Phase 2: Demonstration on full size optic
 - Review final data at vendor
 - Confirm final measurements at LIGO

NSF Review of LIGO Operations 2019-2023

Manufacturing and Timetable

- Advanced LIGO polishing 3 years total
 - 56 total optics, 26 test masses
 - Contract 2009
 - First delivery 2010
 - Final delivery 2012
 - Throughput rate of 2/month once things got rolling
- Advanced LIGO Test Mass <u>coating</u> 6 years total
 - Contract 2009
 - First delivery 2011
 - Final delivery 2015
 - Throughput rate of 2/month once things got rolling

Scatter histograms An indication of etching

 Lower end represents the base microroughness

- High end represents point defects
- See LIGO-G080162
 for details

From Optical Coating Workshop 2008

LIGO-G1701981-v1

LIGO

NSF Review of LIGO Operations 2019-2023

14

NSF Review of LIGO Operations 2019-2023