Modeling and Simulation

Hai-Ping Cheng University of Florida

UF: Jun Jiang, Maher Yazback, Alec Mishkin, Chris Billman, Jonathan Trinastic

Stanford U.: Kiran Prasai, Riccardo Bassiri, Marty Fejer

References: Our Previous Modeling-Simulation of TLS and Loss

• Silica

Rashid Hamdan, Jonathan P. Trinastic, and H. P. Cheng, J. Chem. Phys. **141**,054501 (2014)

Tantala and Ti-doped tantala

Jonathan P. Trinastic, Dustin J. Davis, Rashid Hamdan, and Hai-Ping Cheng. Phys. Rev. B95, 014109 (2017).

Silica revisited

C. R. Billman, J. P. Trinastic, D. J. Davis, R. Hamdan, and H. P. Cheng, Physical Review B, 2017. **95**(1): p. 014109

Potential energy functions

Jonathan P Trinastic, Rashid Hamdan, Yu-Ning Wu, L. Zhang and Hai-Ping Cheng, J. Chem Phys. **139**,154506 (2013)

Current Activities

- I. Structure Model Generation
- Melting-quenching + Reversed MC
- Simulated growth

III. Potential Function Construction

• DFT calculation, parameter fitting

II. Loss Calculations

Energy landscape, statistics, and loss prediction

Tantala (Ta₂O₅) Melting-Crystalli

Quench of previously heated Tantala (Ta2O5) crystal starting from a temperature of 4800 K and cooled to 1912 K. The discontinuity in total energy and drop to zero in the diffusion coefficient indicates a phase transition at 2475 K.

Structure of Tantala (Ta2O5) below the phase transition at 2432 K.

Tantala (Ta_2O_5) Crystallization

Left: Radial distribution functions for Tantala at 2432 K, after crystallization, and Right: in an amorphous configuration, at 2552 K, on the right.

Tantala (Ta_2O_5) Crystallization

- Simulation was done using the LAMMPS classical molecular dynamics simulation package.
- Previously heated Ta₂O₅ was quenched in intervals of 8 K. Each data point consists of equilibration and cooling over 180,000 timesteps in an npt ensemble.
- Linear regression was used on the mean-squared distribution data collected to obtain the diffusion coefficient for each temperature interval.
- The phase transition can be seen at 2475 K from the discontinuity in energy drop in the diffusion coefficient.
- Crystallization of Tantala was observed below this point.

Matching Experiments using reversed Monte-Carlo

Matching Experiments using reversed Monte-Carlo

Ta₂O₅ growth simulation with LAMPPS

Simulation pair potential is based on previous references.

Unified interatomic potential and energy barrier distributions for amorphous oxides, JCP 139,154506(2013)

The pair potential of Ta-O Si-O have been provided by the reference. The pair potential is based on the charged atom.

System setup:

Substrate: Silica(SiO2), Silicon; experiment substrate is amorphous fused silica Deposit material: Tantalite, tantalum pentoxide(Ta2O5), Ions in real experiment deposit

Deposit method: lammps (fix deposit, fix pour with g) PS: need add fix_deposit module in MISC lammps

Simulation region:

The box size would be: a a a+b+c (a is the cubic box for TLS, b is the substrate, c is the source of the deposit materials)

Boundary condition: p p f (Normal simulation), p p p (for long range Coulomb potential)

Calculated material properties: density, defect density, RDF, variance Experimental electron beam radius: about 2nm = 20 A, which Q = 0.61/R = 0.0305 1/ADeposit parameters: substrate density, temperature, incident atom speed Deposit method: deposit ions, deposit atom, deposit molecular

Substrate

 $2000K < V_o < 4000K$

MD deposit simulation references:

Structure: beta-Ta2O5 [1] Aleshina, L. A., and S. V. Loginova. "Rietveld analysis of X-ray diffraction pattern from β -Ta 2 O 5 oxide." *Crystallography Reports* 47.3 (2002): 415-419.

MD Potential: [1] Trinastic, J. P., et al. "Unified interatomic potential and energy barrier distributions for amorphous oxides." *The Journal of chemical physics* 139.15 (2013): 154506.

Deposit start timestep: 10000

Crystal Substrate

Crystal Substrate Charaterization

Interatomic Potential for Nb_2O_5

- A BKS-Morse potential was constructed for the B and H phase of Niobium Pentoxide (Nb₂O₅) using the General Utility Lattice Program (GULP).
- Parameters of the interatomic potential were adjusted to reproduce elastic properties of the two phases of Nb₂O₅ simultaneously, specifically the elastic tensor components and derived bulk, shear and young's moduli.
- The elastic properties from our fitted potential were compared to those obtained through DFT calculations using VASP, given the absence of experimental measurements for Tantala's desired properties.
- The DFT calculation results can be compared to results published by C. Valencia-Balvín et al.
- Table 1 lists the optimized parameters along with the analytical form of the Buckingham and Morse terms.
- Table 2 lists the percent error in the DFT calculations and those using our fitted potential.

Interatomic Potential for Nb₂O₅ $U_{ij} = U_{ij}^{BKS} + U_{ij}^{Morse} - \left(\frac{q_i q_j}{r_{ij}}\right)$ $U_{ij}^{BKS}(r_{in}) = A \exp\left(-\frac{r_{ij}}{\rho}\right) - \frac{C_{ij}}{r_{i}^{6}} + \dots \qquad U_{ij}^{Morse}(r_{in}) = D\left(\left[1 - \exp\left(-a(r_{ij} - r_{o})\right)\right]^{2} - 1\right)$

Interacti on	Α	Rho	С	D	а	r _o	q
Nb – O	100067.0 1	0.1319	6.05	0.293288	1.602698	2.617186	Nb: 3.0
0-0	740.8476 7	0.399508	175.0000	0.000	0.000	0.000	0: -1.2

Table 1: Optimized parameters for the M-BKS potential.

Material	Property (GPa)	DFT	Fit	Percent Error					
Nb2O5 - B phase									
	Bulk	109.86	118.64014	7.992					
	Shear	59.276	58.99578	0.473					
	Young x	211.40	219.79628	3.972					
	Young y	138.31	141.76593	2.499					
	Young z	110.71	143.91642	29.994					
Nb2O5 - H phase									
	Bulk	154.65	138.56986	10.398					
	Shear	58.443	70.08824	19.926					
	Young x	217.08	201.32302	7.259					
	Young y	252.85	218.53058	13.573					
	Young z	225.44	192.17224	14.757					

Table 2: Bulk, shear and Young's moduli of Nb₂O₅ using M-BKS potential alongside fitting parameters (DFT values).

Two-Level Systems and Internal Friction: Old

- Amorphous solids modeled as an ensemble of two level systems (TLS) characterized by their energy asymmetry (Δ)and barrier height (V)
- Longitudinal or transverse (I/t) internal friction (Q⁻¹) based on excited mode in solid

Gilroy, K. S. and Phillips, W. A., Philos Mag. B, 38, 735 (1981)

Two-Level Systems and Internal Friction: New

- Amorphous solids modeled as an ensemble of two level systems (TLS) characterized by their energy asymmetry (Δ)and barrier height (V)
- Longitudinal or transverse (I/t) internal friction (Q⁻¹) based on excited mode in solid

Gilroy, K. S. and Phillips, W. A., Philos Mag. B, 38, 735 (1981)

Ta_2O_5 and $Zr-dope Ta_2O_5$

- Not converged yet!
- See the comparison with old formulation

Mechanical Loss – Pure Ta_2O_5

Calculated internal friction (Q⁻¹) of pure Tantala (Ta₂O₅) as a function of temperature (T). Magnitude on the order of x10⁻³ with observation frequency $\omega = 1$ kHz.

12% ZrO₂ doped Ta₂O₅

Calculated internal friction (Q⁻¹) of 12% Zirconia ZrO_2 –doped Tantala (Ta₂O₅) as a function of temperature (T). Magnitude on the order of x10⁻³ with observation frequency $\omega = 1$ kHz.

25% ZrO₂ doped Ta₂O₅

Longitudinal

► X

Calculated internal friction (Q⁻¹) of 25% Zirconia ZrO₂ doped Tantala (Ta₂O₅) as a function of temperature (T). Magnitude on the order of x10⁻³ with observation frequency $\omega = 1$ kHz.

38% ZrO₂ doped Ta₂O₅

Calculated internal friction (Q⁻¹) of 38% Zirconia ZrO_2 doped Tantala (Ta₂O₅) as a function of temperature (T). Magnitude on the order of x10⁻³ with observation frequency $\omega = 1$ kHz.

