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Recent report on observation of gravitational waves [1, 2] has opened new horizons in
cosmology and astrophysics. Gravitational wave detectors (GWD) such as LIGO andVIRGO
are soon expected to be limited by the standard quantum limit (SQL) stemming from the
balance between the measurement sensitivity and quantum back action. Recently a method
to overcome the SQL for the measurement of motion by introducing a quantum reference
frame in the form of an atomic spin oscillator has been demonstrated [3]. The method
involves a joint measurement on the mechanical and spin systems, with the latter playing
the role of a negative mass reference frame. Here we demonstrate how this novel approach
can be used to overcome the SQL for the free mass, such as a mirror of a GWD. We present
a general idea of the approach and provide the analysis of its experimental feasibility with
realistic experimental parameters. We show that under realistic conditions the sensitivity
of the GWD can be increased by 6 dB over the entire frequency band of interest. We also
outline the ways to use the atomic system memory function for the benefit of GWD.

a. Introduction Sensitivity of state-of-the-art laser interferometric gravitational-wave detec-
tors (GWD), such as Advanced LIGO [4], Advanced VIRGO [5], and GEO600 [6] is to a major
extent limited by quantum fluctuations of the probing light. In the medium- and high-frequency
range the sensitivity is dominated by the phase shot noise of light. In [7], Caves proposed to use a
squeezed quantum state of light with reduced phase fluctuations to suppress the shot noise. Since
2011, this method is used in the GEO600 GW detector [8, 9]

According to the Heisenberg uncertainty relation, suppression of the phase fluctuations leads
to proportional increase of the amplitude ones, which perturbs the interferometer mirrors motion.
This perturbation is known as the radiation pressure noise or the quantum back action (QBA) noise.
The point of balance of those two kinds of quantum noise is known as the Standard Quantum Limit
(SQL) [10].

Intensity of the radiation pressure noise increases at low frequencies, as the mechanical suscep-
tibility of suspended mirrors of GW detectors, χ = −1/Ω2, which can be treated as free masses
in the relevant detectors’ sensitivity band. Currently, this low-frequency band is dominated by
technical (non-quantum) noise sources. However, when the second generation detectors, such as
Advanced LIGO, reach their design sensitivity, the radiation pressure (QBA) noise will be one of
the major components of the total low-frequency noise [11].

Suppression of both the shot noise and the QBA , and thus overcoming the SQL, requires more
advanced methods than simple frequency-independent squeezing. Several such methods were
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Notation Quantity Value, Adv.LIGO Value, 10-m

r Squeezing factor
log 15

2
↔ 15 db

L Interferometer arms length 4000m 10m
m Mirrors mass 40 kg 0.1 kg
κI Interferometer half-bandwidth 2π × 500 Hz 2π × 2000 Hz
Ic Optical power circulating in each of the arms 840 kW 1 kW

Θ =
8ωo Ic
mcL

normalized optical power (2π × 100)3 s−3 (2π × 575)3 s−3

ΩS Atomic system eigen frequency 2π × 3 Hz 2π × 30 Hz
γS Atomic system damping rate 2π × 3 Hz 2π × 30 Hz

TABLE I. The main notations used throughout this paper

proposed, see e.g. review paper [12]. In particular, in [13] it was proposed to use frequency-
dependent squeezing with the amplitude noise suppressed at lower frequencies and the phase noise
— at the higher ones. In order to create this frequency dependence, the authors proposed to reflect
the “ordinary” squeezed light from an additional filter cavity. The main problem with this method
is that this cavity has to be very narrow-band one (a few hundreds of Hertz). This translates into
very long (hundred meters or even kilometers) and therefore expensive cavities. This complication
is circumvented in a recent paper [14] where an auxiliary optical mode ot the GWD interferometer
itself is used as an effective filtering cavity. This scheme utilizes two entangled beams generated
by non-degenerate parametric down-conversion process which are injected into the main and the
auxiliary optical modes. However, it still requires significant modification of the GWD core optics,
namely, two independent schemes for injection and extraction of the entangled beams.

A different approach to combat the QBA of measurement of motion where an atomic spin
ensemble is used as an auxiliary system, has been proposed in [15]. The atomic ensemble was
shown to perform a transformation of the probing light identical to the one of amechanical harmonic
oscillator with an effective negative mass (or a negative eigen frequency). In a recent work [3]
the QBA evading idea using a high frequency nanomechanical oscillator and a spin oscillator was
demonstrated experimentally.

Here we show that the negative frequency atomic spin ensemble provides broadband quantum
noise reduction for motion of free masses, such as the GWD mirrors. In principle, it could be used
in both sequential [13] and entangled [14] configurations. However, due to the specific requirement
for the wavelength of light probing the atomic spin system, only the second configuration is feasible
for the contemporary GWDs.

We show that the spin system allows for a broadband sensitivity beyond the SQL for interfer-
ometers of a very different scale: the Advanced LIGO and a much smaller 10-meter Hannover
prototype interferometer which is currently under construction [16].

b. The scheme. Measurement of space distortions caused by gravitational waves (GW) is
performed by an optical interferometer with suspended end mirrors (Figure 1). In the absence of
optical losses, with the interferometer tuned on resonance, the phase quadrature of the light mode
exiting the interferometer, b̂s

1, measured by a homodyne detector is [12, 17]:

b̂s
I = âs

I +
2κIΘχ

(κI − iΩ)2
âc

I +

√
2κIΘ

κI − iΩ
χ

Fs + FT
√
~m

(1)
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FIG. 1. Setup for a GWD beyond the SQL with the negative mass spin system. The GWD and the
atomic system are probed with entangled light modes (dashed lines). Combined signals from detectors D1
and D2 allow for back action free measurement.

where âs
I , âc

I are the phase (sine) and amplitude (cosine) quadratures of the incident light, Fs is the
signal force, for example from GW, and FT is a sum of the thermal force, seismic noise and other
technical noise sources (notations used throughout this paper are listed in the Table I). The first
term describes the shot noise and the second one — the QBA noise.

If the incident light is in a coherent or in a squeezed state, then the quadratures âs
I , âc

I are
uncorrelated and their spectral densities are equal to e−2r/2 and e2r/2. It is easy to show [7, 12]
that in this case spectral density of the sum of the shot noise and QBA quantum noise (normalized
to to signal force Fs) cannot be smaller than the force SQL SF

SQL = ~mΩ
2. Typically, it is recast as

the equivalent position SQL:

Sx
SQL =

SF
SQL

(mΩ2)2
=
~

mΩ2 . (2)

Let us now introduce the second quantum system consisting of a multi-atom spin ensemble.
If the spins are optically polarized along a certain direction x the collective spin has a large
average projection Jx = |〈Ĵx〉|/~ � 1 [15, 18]. Its normalized y, z quantum components form
canonical oscillator variables X̂S = Ĵz/

√
~Jx , P̂S = −Ĵy/

√
~Jx , satisfying the commutation relation

[X̂S, P̂S] = i. In terms of those variables, the Hamiltonian for the ensemble placed in magnetic
field oriented along x becomes

ĤS = ~ΩS Jx −
~ΩS

2
(X̂2

S + P̂2
S) , (3)

where ΩS is the Larmor frequency. The first term is an irrelevant constant energy offset due to
the mean spin polarization. The second term is equivalent to the Hamiltonian of a mechanical
oscillator ĤM with a negativemass and spring constant. Each quantum of excitation in the negative
mass spin oscillator physically corresponds to a deexcitation of the inverted spin population from its
highest energy level by ~ΩS. Preparation of the collective spin in the energetically lowest Zeeman
state realizes instead a positive mass and spring constant spin oscillator.

Interaction of light with a spin in magnetic field placed inside a resonator with the finess F can
be cast in the form similar to that for the mechanical oscillator (see Supplementary Information):

b̂s
S = âs

S + 2θS χSâc
S +

√
2θS χS f̂S , (4)
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FIG. 2. Dashed line: susceptibility function χ for a free mass; solid line: absolute value of susceptibility of
the spin system with ΩS = γS = 2π × 3 Hz

FIG. 3. Spectral densities of quantum noise. Dotted blue line - SQL; dashed orange curve - SQL-limited
GWD noise; solid green curve - hybrid GWD/spin system. Left: Advaced LIGO, right: 10-m prototype
(see Table I). In all cases, 2.5% of input losses and 2.5% of output losses are assumed for both GWD and
atomic spin channels. In addition, 0.01% of intracavity roundtrip losses for the GWD are assumed.

where âs
S, âc

S are the phase (sine) and amplitude (cosine) quadratures of the input light mode in
polarization orthogonal to the linearly polarized driving optical field, θS = ΩSΓS, ΓS = γSd0 is the
spin oscillator read out rate, d0 =

F
π
σN
A is the cavity enhanced resonant optical depth of the spin

ensemble, γS =
σ
A
γ2

optΦ

∆2
opt

is the spin bandwidth dominated by the optically induced decoherence, N

is the atom number, σ - the atomic optical crossection, A — the spin ensemble crossection, γopt
— optical transition bandwidth, ∆opt - optical field detuning from atomic resonance, Φ— photon
flux [3, 18],

χS = (Ω
2 −Ω2

S + 2iΩγS)
−1 (5)

is the effective susceptibility of the spin oscillator, and f̂S is a normalized thermal force acting on
the spin. An interesting and useful feature of a spin oscillator is that it is possible to provide the
effective temperature of the noise f̂S close to zero even if the collective spin is formed by gas of
atoms at room temperature [18]. Under such conditions the spectral density of this noise force
corresponds to zero point fluctuations:

SS = | Im χ−1
S | = 2|Ω|γS . (6)
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The principle of the QBA evasion for measurement of motion using a spin as a negative mass
reference frame has been demonstrated in [3]. There a light beam in a coherent state was used to
sequentially probe the optomechanical system and the spin system, such that âc,s

S = b̂c,s
I (note the

similarity of this scheme with the one of [13], where light sequentially probes the test masses and
the the filter cavity). If the response of the spin system corresponds to the effective negative mass
oscillator and matches the response of the interferometer, such that

Θχ

κI
= −θS χS , (7)

then within the frequency band Ω < κI the QBA is cancelled in the output light mode:

b̂s
S = âs

I +

√
2Θ
κI

χ

(
Fs + FT
√
~m

− f̂S

)
, (8)

resulting in the measurement sensitivity not limited by SQL.
For application of the negative spin mass idea to GW detectors the quantum light mode address-

ing the two systems cannot be the same because of the need to use very different wavelengths. The
detectors are driven by λI = 1064 nm (and longer wavelengths are planned for the future), whereas
the spin has to be driven by light nearly resonant to one of the strong atomic transitions, such as
λS = 852 nm for Caesium [3].

A solution is to probe the GWD and the spin system with entangled light modes at âc,s
I and âc,s

S
at wavelengths λI and λS, respectively. Such probe fields can be prepared by nonlinear optical
transformations (sum frequency generation and parametric down conversion) as shown in Figure
1 [19]. A small fraction of the GW detector laser and a laser locked to the Caesium line generate
a pump beam through the sum frequency generation in χ(2) medium. This beam is then used to
pump a parametric downconversion process (PDC) in which two-mode squeezed vacuum modes
âI,S at wavelengths λ1 and λ2 are generated [19, 20] satisfying

âc
I,S = ẑc

I,S cosh r + ẑc
S,I sinh r , (9a)

âs
I,S = ẑs

I,S cosh r − ẑs
S,I sinh r . (9b)

Here ẑc,s
1 and ẑc,s

2 correspond to two independent vacuum fields.
The sine quadratires b̂s

I,S of the output beams are measured by the homodyne detectors DI,S,
respectively. Adding the output of the detector DS, multliplied by the optimal weigth function, to
the output of DI , we obtain the readout with the suppressed quantum noise. It is easy to show (SI)
that in the ideal lossless case, the weigth factor is equal to tanh 2r , giving the noise supprression
factor equal to cosh 2r . Importantly, the lasers λI and λS do not have to be phase locked to each
other. Rather only the phases between the local oscillators and the respective laser beams should
be stabilized, so that the correct quadratures are detected.

c. Numerical estimates. The quantum noise spectral density of the considered scheme is
caclulated in the SI, taking into account the optical losses in the interferometer and the spin system
for two sets of parameter, one of which approximately corresponds to the design goals of the
Advanced LIGO [11] and the other one— to the Hannover 10-m prototype interferometer [16, 21],
see Table I.

The critical parameters of the spin system are deduced from condition (7) using the parameters
of the corresponding GWDs. Consider, for example, the Advanced LIGO interferometer. Its
projected circulating power (Table I) corresponds to the normalized power Θ/(2π)3 ≈ (100 Hz)3
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with the interferometer bandwidth κI/2π ≈ 500 Hz [11]. Tuning the Larmor frequency of spins
to ΩS/2π = 3 Hz, we arrive at the requirement for ΓS/2π ≈ 600 Hz. Note that from eq. (4) we
can infer that on resonance the ratio of the ground state noise contribution (last term) to the shot
noise is equal to half the ratio of the QBA (second term) to the ground state noise and is given
by ΓS/γS = d0. In [22] we achieved this ratio and hence the d0 ≈ 2 for a single pass interaction
in the atomic cells with the length of 4 cm. Increasing the length of the cell to 10 cm and placing
the spin ensemble in an optical resonator with the finesse of F ≈ 150 will provide d0 ≈ 200. The
25mm room temperature Caesium cells with advanced wall coating [18, 23] have the intrinsic
linewidth < 1 Hz. With optical power broadening to γS/2π = 3 Hz we will be dominated by the
meter readout and will achieve the required value of ΓS/γS. In Figure 2, we plot the susceptibility
functions for a free mass and for the spin system which are well matched to each other over the
entire frequency band of interest.

In the 10-m prototype GWD case, the best sensitivity frequency band is shifted to upper
frequencies by about one order of magnitude, which relaxes requrements forΩS, γS proportionally,
see Table I. In this case, the rrequired parameters are ΓS/2π ≈ 3000 Hz, d0 ≈ 100 and F ≈ 75.

In Figure 3, the resulting quantum noise spectral densities calculated in SI are shown for realistic
optical losses listed in the figure caption. It follows from these results that the proposed scheme
allows to implement the sensitivity gain about 6 db across the entire sensitivity band of interest.

d. Conclusion. We present a way to suppress quantum noise in gravitational wave inter-
ferometers by adding a spin oscillator into the detection path. The proposed method allows for
broadband detection sensitivity beyond the Standard Quantum Limit across the entire frequency
bandwidth relevant for gravitational wave observation. In comparison to the earlier proposals
for beyond the SQL GWD which use either an external filtering cavity [13] or utilize the GW
interferometer as an effective filtering cavity [14] our approach has an advantage of being com-
pletely compatible with existing GWDs and thus not requiring any complex and costly alterations
in the GWD’s core optics. It also paves the road towards generation of an entangled state of the
multi-kilogram GWD mirrors and atomic spins which would be of fundamental interest due to the
sheer size of the objects involved.
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Notation Quantity Value
ηI1 quantum efficiency of the input path of the interferometer 97.5%
ηI3 quantum efficiency of the output path of the interferometer 97.5%
AI Light absorption per bounce in the interferometer 0.01%

κIl = ηI2κI =
cAI

4L
part of the interferometer half-bandwidth due to the optical losses

κIc = (1 − ηI2)κI part of the interferometer half-bandwidth due to the coupling
ηS1 quantum efficiency of the input path of the spin system system 97.5%
ηS3 quantum efficiency of the output path of the atomic system 97.5%
AS Light absorption per bounce in the spin system
LS Length of the spin system cavity

κSl = (1 − ηS2)κS =
cAS

4LS
part of the spin system cavity half-bandwidth due to the optical losses

κSc = ηS2κS part of the atomic system cavity half-bandwidth due to the coupling

TABLE II. Notation related to the optical losses

SUPPLEMENTARY INFORMATION

1. Input/output relation

With optical losses taken into account, Eqs. (1, 4) of the main text can be shown [s1, s2] to take
the following form:

b̂s
I =
√
ηI3

[
RI ĉs

I +
2κIcΘχ

`2 ĉc
I + TI

(
n̂s

I2 +
Θχ

`
n̂s

I2

)
+

√
2κIcΘ

~m
χFs

`

]
+

√
1 − ηI3 n̂I3 , (10a)

b̂s
S =
√
ηS3

[
RSĉs

S + 2ηS2θS χSĉc
S + TS(n̂

s
S2 + θS χSn̂c

S2) +
√

2ηS2θS χS fS
]
+

√
1 − ηS3 n̂S3 , (10b)

Here

ĉc,s
I =
√
ηI1 âc,s

I +
√

1 − ηI1 n̂c,s
I1 , (11a)

ĉc,s
S =
√
ηS1 âc,s

S +
√

1 − ηS1 n̂c,s
S1 (11b)

are the effective incident light quadratures for the interferometer and the spin system cavity, n̂c,s
I1 and

n̂c,s
I3 , n̂c,s

S1 and n̂c,s
I3 are the vacuum noise operators associated with the input and the output losses,

n̂c,s
S2 , n̂c,s

I2 are the vacuum noise operators due to the internal optical losses in the interferometer/spin
system cavity,

` = κI − iΩ , (12a)

RI =
2κIc

`
− 1 , TI =

2√κIcκIl

`
, (12b)

RS =
κSc − κSl

κS
, TS =

2√κScκSl

κS
. (12c)

Other notations are listed in Table II.
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It follows from (10a) that the signal force estimate without detection on the spin system is given
by

F̃s I =

√
~m

2κIcΘ

κI − iΩ
χ

b̂s
I = Fs + F̂I , (13)

where

F̂I =

√
~m

2κIcΘ

`

χ

[
RI ĉs

I +
2κIcΘχ

`2 ĉc
I + TI

(
n̂s

I2 +
Θχ

`
n̂c

I2

)
+

√
1 − ηI3
ηI3

n̂I3

]
(14)

is the quantum noise in the interferometer channel alone.

2. Spectral densities

Spectral densities of the input noise components [see Eq. (9) of the main text] are defined by
the degree of two-mode squeezing

S[âc
I ] = S[âs

I] = S[âc
S] = S[âs

S] =
cosh 2r

2
. (15a)

The only non-zero cross-correlation spectral densities are

S[âc
I â

c
S] =

sinh 2r
2

, S[âs
I â

s
S] = −

sinh 2r
2

. (15b)

Therefore, spectral densities of ĉc,s
I,S and their (non-zero) cross-correlation spectral densities are

equal to, respectively

S[ĉc
I ] = S[ĉs

I] =
ρI + 1

2
, (16a)

S[ĉc
S] = S[ĉs

S] =
ρS + 1

2
, (16b)

S[ĉc
I ĉ

c
S] =

ρIS

2
, S[ĉs

I ĉ
s
S] = −

ρIS

2
, (16c)

where

ρI = 2ηI1 sinh2 r , (17a)
ρS = 2ηS1 sinh2 r , (17b)

ρIS =
√
ηI1ηS1 sinh 2r . (17c)

The force spectral densities for the interferometer and the spin system (14, 10b) and their cross-
correlation spectral density are:

SI =
~m|` |2

4κIcΘ|χ |2
σI , (18a)

SSpin =
ηS3
2
σSpin , (18b)

SI Spin =
1
2

√
~mηS3
2κIcΘ

`

χ
σI Spin . (18c)
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Here

σI = |RI |
2ρI +

1
ηI3
+

4ηI2κ
2
IΘ

2 |χ |2

|` |4
(ηI2ρI + 1), (19a)

σSpin = R
2
SρS +

1
ηS3
+ 4ηS2θ

2
S |χS |

2(ηS2ρS + 1) + 4ηS2θS | Im χS | , (19b)

σI Spin =

(
−RIRS +

4κIcηS2ΘθS χχ
∗
S

`2

)
ρIS . (19c)

The force estimate for the hybrid interferometer-spin system is equal to

F̃s = F̃s I + αb̂s
S , (20)

where
α = −

SI Spin

SSpin
. (21)

The resulting effective position noise spectral density is equal to

S = |χ |2
(
SI −
|SI Spin |

2

SSpin

)
=
~m|` |2

4κIcΘ

(
σI −

|σI Spin |
2

σSpin

)
. (22)

3. Asymptotic cases

a. Strong squeezing. Consider the leading in er terms in Eqs. (19). In this approximation,

ρI ≈
ηI1e2r

2
, (23a)

ρS ≈
ηS1e2r

2
, (23b)

ρIS ≈

√
ηI1ηS1 e2r

2
, (23c)

σI ≈
ηI1e2r

2

(
|RI |

2 +
4η2

I2κ
2
IΘ

2 |χ |2

|` |4

)
, (24a)

σSpin ≈
ηS1e2r

2

(
R2

S + 4η2
S2θ

2
S |χS |

2
)
, (24b)

σI Spin ≈

√
ηI1ηS1 e2r

2

(
−RIRS +

4ηI2ηS2κIΘθS χχ
∗
S

`2

)
. (24c)

and

σI −
|σI Spin |

2

σSpin
≈
ηI1e2r

2

����RSηI2κIΘχ

`2 + RIηS2θS χS

����2
R2

S + 4η2
S2θ

2
S |χS |

2
. (25)

In order to compensate the noise, the numerator of this equation has to be equal to zero. The
simplified frequency-independent form of this condition is the following:

ηS2
1 − 2ηS2

θS =
ηI2

1 − 2ηI2

Θ

κI
. (26)
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b. Shot noise. Suppose that the shot noise dominates in Eqs. (19):

σI ≈ |RI |
2ρI +

1
ηI3

, (27a)

σSpin ≈ R
2
SρS +

1
ηS3

, (27b)

σI Spin ≈ −RIRSρIS . (27c)

In this case,

σI −
|σI Spin |

2

σSpin
≈

2

(
R2

SηS1

ηI3
+
|RI |

2ηI1
ηS3

− 2|RI |
2R2

SηS1ηI1

)
sinh2 r +

1
ηI3ηS3

2R2
SηS1 sinh2 r +

1
ηS3

. (28)

Then suppose that

εαβ = 1 − ηαβ � 1 , κIl � κI ⇒ |TI |
2 � 1 κSl � κS ⇒ T 2

S ≈ 4(1 − ηS2) = 4εS2 � 1 ,
(29)

and the squeezing is strong, er � 1. In this case, keeping only the first order non-vanishing
loss terms amplified by squeezing, and neglecting those terms if they not enhanced by sinh2 r , we
obtain:

σI −
|σI Spin |

2

σSpin
≈

2(εI1 + |TI |
2 + εI3 + εS1 + 4εS2 + εS3) sinh2 r + 1

cosh 2r
. (30)

c. Radiation pressure noise. Under condition of the radiation-pressure noise dominating
other noise sources:

σI ≈
4ηI2κ

2
IΘ

2 |χ |2

|` |4
(ηI2ρI + 1), (31a)

σSpin ≈ 4ηS2θ
2
S |χS |

2(ηS2ρS + 1) , (31b)

σI Spin ≈
4κIηI2ηS2ΘθS χχ

∗
S

`2 ρIS . (31c)

In this case,

σI −
|σI Spin |

2

σSpin
≈

4ηI2κ
2
IΘ

2 |χ |2

|` |4
×

2(ηI1ηI2 + κIηS1ηS2 − 2ηI1ηI2ηS1ηS2) sinh2 r + 1
2ηS2 sinh2 r + 1

. (32)

Combining this result with assumptions (29), we obtain

σI −
|σI Spin |

2

σSpin
≈

4κ2Θ2 |χ |2

|` |4
×

2(εI1 + εI2 + εS1 + εS2) sinh2 r + 1
cosh 2r

. (33)

[s1] S.L.Danilishin, F.Ya.Khalili, Living Reviews in Relativity 15 (2012).
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