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Abstract

We derive a model describing the gravitational-wave emission from a rapidly spinning-down

millisecond magnetar born during a binary neutron star merger. Gravitational-wave emission

and/or torques due to magnetic dipole radiation spin down the nascent neutron star. The waveform

model described here allows for arbitrary braking indices, based on analytic work from Lasky et al.

[1].
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I. INTRODUCTION

The merger of two neutron stars can result in the birth of a rapidly rotating, highly

magnetised neutron star that spins down through some combination of gravitational-wave

and electromagnetic emission. Rowlinson et al. [2] showed that simple spindown models [e.g.,

3] can fit x-ray afterglow lightcurves following prompt short GRB emission. The model was

generalised to include arbitrary braking indices n in Lasky et al. [1], who showed that a

non-fiducial braking index — i.e., n 6= 3 — provides a better fit to the data for one of the

two short GRBs analysed.

Here we show how the model of Lasky et al. [1] can be used to generate gravitational wave-

form models that can be utilised to benchmark searches for gravitational-wave transients

following binary neutron star merger events.

II. GRAVITATIONAL-WAVE EMISSION MODEL

We assume the spindown of the nascent neutron star can be well-described by the general

torque equation:

Ω̇ = −kΩn, (1)

where Ω is the star’s angular frequency, an overdot represents a derivative with respect to

time, k is a constant of proportionality, and n is the braking index. A braking index of n = 5

describes a star being spun down through gravitational-wave emission only, while braking

due to an unchanging, dipolar magnetic field in vacuo implies a theoretical braking index

of n = 3. In practice, the braking index of isolated pulsars is almost always n . 3 [e.g.,

4, 5], while the braking index has only been measured in two millisecond magnetars, and is

n = 2.9± 0.1 and n = 2.6± 0.1 [1].

Rotating, non-axisymmetric stars emit gravitational waves at twice the star’s spin fre-

quency. For possible causes of such non-axisymmetries, see Refs. [1, 6] and references therein.

Integrating Eqn. (1), and re-writing in terms of the gravitational-wave frequency implies

fgw(t) = fgw,0

(
1 +

t

τ

) 1
1−n

. (2)

Here, τ = −Ω1−n
0 /k(1 − n) is the spindown timescale, and fgw,0 is the gravitational-wave

frequency at t = 0.
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In principle, t = 0 is the time following the binary neutron star merger at which the rem-

nant has settled to rigid body rotation, and begins spinning down due solely to gravitational-

wave and/or electromagnetic losses. This time is likely ∼ 100s of ms following the merger.

In practice, this time is difficult to determine, but knowing the true value of t = 0 is not

important as it is covariant with τ .

The gravitational-wave amplitude of a non-axisymmetric, rotating body is [7]

h0(t) =
4π2G

c4
Izzε

d
f 2
gw(t), (3)

where Izz is the principal moment of inertia, ε is the ellipticity and d is the distance to the

source. We assume these to be unchanging throughout the relevant evolution time. The

strain amplitude is therefore

h0(t) =
4π2G

c4
Izzεf

2
gw,0

d

(
1 +

t

τ

) 2
1−n

. (4)

Both the ellipticity and principal moment of inertia are unknown for a given system. In

principle we can therefore combine these two parameters, however in practice it is convenient

to choose a fiducial value of Izz and simply search over different values of ε.

The plus and cross polarisations of the strain are respectively:

h+(t) = h0(t)
1 + cos2 ι

2
cos Φ(t), (5)

h×(t) = h0(t) cos ι sin Φ(t), (6)

where ι is the inclination angle, and

Φ(t) = Φ0 + 2π

∫ t

0

dt′fgw(t′), (7)

is the phase with Φ0 ≡ Φ(0). Substituting the gravitational-wave frequency evolution,

Eqn. (2), into the phase evolution implies

Φ(t) = Φ0 + 2πτfgw,0

(
1− n
2− n

)[(
1 +

t

τ

) 2−n
1−n

− 1

]
. (8)

In summary, Eqns. (4–6) and (8) constitute the full waveform model describing a rapidly

rotating neutron star spinning down with arbitrary braking index.
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A. Energy emitted

The total power emitted in gravitational waves is

Ėgw(t) = −32G

5c5
I2zzε

2Ω(t)2. (9)

Substituting in solution of Eqn. (1) for the evolution of the stars angular frequency and

integrating to give the emitted gravitational-wave energy as a function of time gives

Egw(t) = −32π6G

5c5
I2zzf

6
gw,0ε

2τ
n− 1

n− 7

[(
1 +

t

τ

) 7−n
1−n

− 1

]
. (10)

III. PARAMETER SPACE

In this section we highlight the contributions of various parameters in the above wave-

forms, and discuss likely parameter ranges for millisecond magnetars following binary neu-

tron star mergers. The free parameters are fgw,0, τ , n, and ε (or alternatively ε/d).

A. Initial gravitational-wave frequency, fgw,0:

Conservation of angular momentum through the merger phase implies the post-merger

remnant should be rotating at, or close to, the mass-shedding limit (e.g., see Ref. [8]). This

spin period p0 is a function of the equation of state, but in general the initial spin period is

expected to be between 5 & p0/ms & 0.7, corresponding loosely to initial gravitational-wave

frequencies between 500 . fgw,0/Hz . 3, 000. In principle, numerical relativity simulations

of binary neutron star mergers can also inform the post-merger remnant’s gravitational-wave

frequency. In practice though, more needs to be done to understand the evolution of such

systems from the end of numerical relativity simulations—typically tens of ms following the

merger—to the point at which the body can adequately be described as a uniformly rotating

body.
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B. Damping timescale, τ :

It is instructive to consider the special case of n = 3, in which case the damping timescale

is the electromagnetic dipole braking time

τem =
3c3I

B2
pR

6Ω2
0

, (11)

where Bp is the dipole, poloidal component of the external magnetic field, R is the stellar

radius, and Ω0 = 2π/p0 is the initial angular frequency of the star. To give an indication of

reasonable values here, a 5 × 1015 G field, initial spin period of 1 ms and radius of 12 km

(typical radii are between 10 and 14 km) implies τem ≈ 350 s, while a 5× 1014 G field with

the same parameters implies τem ≈ 35, 000 s. These two numbers do a reasonable job of

covering the extremes of this parameter space.

A complementary approach to understanding this parameter space is by looking at fits

of the milliesecond magnetar model to x-ray light-curves following short GRBs [1, 2, 9].

Rowlinson et al. [2] fit many tens of GRB light curves and extracted, among other things,

values for τem under the fiducial assumption of n = 3. The range of τem values ranged from

many tens of seconds to tens of thousands of seconds, confirming our above estimates.

C. Braking index, n:

There are only two measurements of braking indices of millisecond magnetars [1], and

the physics dictating those values is ill-understood. However it is also prudent to explore

the n = 5 parameter space as this describes gravitational-wave dominated emission.

D. Ellipticity, ε:

Non-zero ellipticities can be caused by a number of factors. These include wound-up

internal magnetic fields coupled to the Mestell-Jones-Cutler spin-flip instability [e.g., 10]

and secular bar modes [e.g., 11, 12]. For a discussion of many relevant mechanisms, their

associated timescales and expected stellar deformations, see Ref. [13]. In general, it is

difficult to have stellar ellipticities larger than∼ 10−3 [13]. However ellipticities much smaller

than this will unlikely emit gravitational waves of sufficient amplitude to be detected with

second-generation interferometers. It is therefore reasonable to assume 10−4 . ε . 10−2.
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fgw,0 τ n ε

1.0 kHz 102 s 2.5 10−2

2.0 kHz 103 s 3.0 10−3

3.0 kHz 104 s 5.0

TABLE I: Waveform model parameters. We show 21 of these waveform models with combinations

of these parameters in Fig. 1

IV. WAVEFORMS

We illustrate the effect each parameter has on the waveform model by creating 54 wave-

forms with every combination of parameters in Table I. We show the evolution of h0 and

fgw for each of these waveforms in Fig. 1. In each model we show a fiducial waveform in

black, with parameters: fgw,0 = 2 kHz, τ = 103 s, n = 3.0 and ε = 10−2. The top two rows

of Fig. 1 show the evolution of h0 (top row) and fgw (second row) where the axes are linear,

and therefore highlight the early-time rate of change of these parameters. The bottom two

rows show the same, however on log-log axes to show the initial, almost monochromatic

plateau phase for t . τ , and the power-law decay for t & τ .

Figure 1 is divided into four columns where we vary fgw,0, τ , n, and ε in each column

(from left to right, respectively) as indicated in the legends. The effect of each parameter

can clearly been seen in each plot.

V. CONCLUSION

We derive and show gravitational-waveform models for the evolution of a nascent neutron

star spinning down with an arbitrary braking index. This model includes as subsets the

standard n = 3 spindown where the torques are due to an unchanging, dipolar magnetic

field in vacuo, as well as a star being spun down through gravitational-wave emission only

(n = 5). These models are designed to be used in long transient gravitational-wave signals

from newly formed neutron stars.

These models do not take into account a number of things, including additional torques

from fallback accretion or alternative gravitational-wave emission mechanisms such as stellar

modes unstable to the Chandrasekhar-Friedmann-Schutz (CFS) instability. While fallback
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FIG. 1: Strain amplitude h0 and gravitational-wave frequency fgw evolution for our 54 different

waveform models. The top two rows show the evolution of h0 (top row) and fgw (second row) where

the axes are linear, and therefore highlight the early-time rate of change of these parameters. The

bottom two rows show the same, however on log-log axes to show the initial, almost monochromatic

plateau phase for t . τ , and the power-law decay for t & τ . Each panel shows our fiducial model

in black (see text for a description), and varies one parameter in each column: fgw,0 (first column),

τ (second column), n (third column), ε (fourth column).

accretion is expected to be minimal for binary neutron star remnants, CFS instabilities may

play an active role—see e.g., Refs. [11, 12] and references therein—although parameters

associated with those models are highly uncertain.
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