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Mirror misalignments of the Fabry Perot Cavity mirrors can change the cavity length. This source
of noise can couple into differential arm length of a gravitational wave detector. This paper explores
length change due to angular misalignment, and then extends it to the effect of angular noise on
the two cavity system. We will also provide results from an experiment where we use mechanical
modulation to measure the main angular components that are believed to couple most strongly to
the differential arm length. The angular noise coupling model and experimental results will be used
in combination to understand the angular noise contribution to differential arm length noise.

I. Introduction

In 1916 gravitational waves were predicted by Albert
Einstein as a byproduct of his general theory of relativ-
ity which describes the relation between spacetime and
matter. Just as accelerating charges emit light in classi-
cal electrodynamics, gravitational waves are emitted by
accelerating masses. Gravitational waves travel at the
speed of light in vacuum but, contrary to the latter, they
are not obstructed by matter [1].

Gravitational waves will lead to new physics and astro-
physics to examine the universe in complement to the ex-
isting information such as electromagnetic radiation and
particles. Since gravity is much weaker than the other
four fundamental forces, it is challenging to set up an
experiment with gravity due to the large scale required
to observe it. Thus, research in gravity is done by ob-
serving astrophysical signals around us, and gravitational
waves will provide a new way to see more direct influences
of the effects of gravity [2]. Additionally, predictions of
general relativity can be compared to the gravitational
wave data to test the validity limits of the theory. Lastly,
gravitational wave astronomy will open a myriad of as-
tronomical data, from examining black holes to prob-
ing past the cosmic microwave background. The cosmic
microwave background may include a gravitational wave
background, which would be evidence for inflation.

Laser Interferometer Gravitational-Wave Observatory
(LIGO) is a collaboration dedicated to finding gravita-
tional waves. It consists of two main facilities in Liv-
ingston, Louisiana and Hanford, Washington. These fa-
cilities detect gravitational waves with an optical system
based on the interferometer developed by Michelson and
Morley. Each observatory consists of a Michelson inter-
ferometer with 4 kilometer arms which measure the de-
formation of space produced by gravitational wave by
looking for intensity variations in the interference pat-
tern. It contains Fabry-Perot cavities which allows the
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light to bounce along the arms about 280 times. It uses
light recycling to increase the power of a 25W laser into a
100KW laser in the arms. The laser also travels through a
vacuum and dampens out environmental vibrations both
actively and passively. The main optics are suspended
with four stages of pendulums to passively isolate them
from ground motion, and is kept at its operating point by
active control through a plethora of feedback and feed-
forward techniques.

After LIGO searched for gravitational waves in the
2000’s with no clear detections. Afterwards, the de-
tectors were upgraded via the Advanced LIGO project.
With these improvements, in September 2015, LIGO de-
tected the first gravitational wave, and they had a second
detection in December 2015 [3, 4]. Both of these detec-
tions were due to binary black hole system rotating and
then combining.

In order to keep the mirrors stable, LIGO uses an ac-
tive alignment sensing and control system (ASC) to re-
duce the mirror’s angular motion [5]. Currently, the low
frequency sensitivity (10-15 Hz) of the LIGO Livingston
instrument is limited by the angular control feedback
loops. To reduce the noise in this frequency band, the an-
gular noise to DARM coupling should be reduced below
1/10th of the design sensitivity at that frequency [5].

II. Work Done

e Gained familiarity with techniques used by read-
ing references provided. This includes gaining more
knowledge in the following;:

— interferometric gravitational wave detector
workings
— Control systems

— Digital signal processing and data analysis
(specifically random data analysis)

— Wiener filtering and spectral subtraction

— Better knowledge of optics to better under-
stand angular sensing and control
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FIG. 1. Notice the sharp uptick in angular noise 25Hz, where
it quickly becomes the dominant source of noise at 10Hz [6].

e Learned about LIGO instrument and focus on an-
gular control systems and incorporate knowledge
gained from the readings with feedback and feed-
forward control systems.

e Learned about WFS, ADS, Optical Lever, and
other ASC systems in LIGO.

e Practiced some discrete fast fourier transform and
power spectrum problems with Matlab.

e Learned about the tools to take necessary online
data. Measurements templates will be created with
the online LIGO tool DTT or generated with Mat-
lab depending on the progress.

e Worked on a model for change in cavity length in
the Fabry-Perot Cavity with a Gaussian beam.

e Used the hard-soft basis to in the model to remove
cross couplings in length change.

e Found length change for hard-soft in yaw.

e Generalized cavity length change model to the two
cavity system of LIGO.

e Made model in the differential hard basis that
LIGO uses.

e Did theoretical work for an experiment to produce
spectra for angles.

e Performed mechanical modulation experiment.

e Did some calibration for the output of the experi-
ment.

III. Change in Cavity Length in Fabry-Perot
Cavity

III.1. Beam Spot Motion Approach to Angular

Noise

In the interferometer cavity, angular rotations can cre-
ate noise by coupling to cavity length. This is because
the beam is not centered the mirror’s center of rotation,
and this distance is called static beam spot offset. When
the mirror rotates slightly, this causes a change in cav-
ity length (eq (1)). The equation depends on frequency
however, and for the Fourier transform of equation (1),
both the beam spot offset and mirror angle depend on
frequency. The convolution can be approximated as in
equation (2) [5].

Al<t) = dspot(t) X emirror(t) (1)

AL(f) = Dspot(f) * @mirror(f)

~ dﬁgfts X @mirror(f) + eﬁji\a/{for x DSpot (f)

(2)

ITI1.2. Cavity Misalignments

A laser beam in the Fabry-Perot cavity is shifted
away due to angular misalignment in the cavity mir-
rors. The length of the cavity that the light beam travels
is changed. This manuscript will describe methods to
deduce both the beam position displacement and cor-
responding length changes as shown in Figure 2. The
resulting change in cavity length from both arms con-
tributes to the noise seen by the DARM channel.

A beam in the Fabry-Perot cavity must go through
the two centers of curvature of the mirrors. So, when the
mirrors rotate, their centers of curvature change. This
causes the beam line to change. We have two x and two
z coordinates from the centers of curvature here to define
the line, and we will use these to find the points that the
beam hits the mirrors.

II1.3. Change in Cavity Length

If a beam hits the mirrors at points (z1,21) and
(22, x2), the change in cavity length, AL, can be found.
Note, the angles and center of curvature coordinates are
implicitly in the variables of equation (3). The initial
cavity length before perturbation is L.

AL:L/—L:\/(QSQ—1‘1)2+(22—21)2—L (3)
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FIG. 2. This figure shows the setup of the mirrors. The points
in the middle are the locations of the center of curvatures of
each mirror. The points on the mirror are coordinates that
this paper desires to find.

II1.4. Beam Reflection Location in Fabry-Perot

Cavity

The left mirror is the input test mass (ITM) in this
paper and the right mirror is the end test mass (ETM).
For notation simplicity, the ITM angle is §; (CCW con-
vention) and the ETM angle is §2 (CW convention) with
both measuring the angular misalignment. Let x be the
height of the beam at position z horizontally. The follow-
ing constants are the locations of the center of curvature
of mirror 1 and 2.

21c = Ry cos(61)
Z1. = Ry sin(6y)
29¢ = L — Ry cos(62)

X2 = R2 sin(92)

(4)

The beam line pictured in red must go through the two
centers of curvature. Therefore the slope, m, can be ob-
tained.
Tic — T2¢
m—= ——
Z1e — Z2¢
e =72 . (5)
_ Rysin(6;) — Rosin(6s)
~ Rycos(fy) + Rycos(fy) — L

The beam path is given in equation (6). The equations
for the mirror curves are in equations (7) and (8).

xbeam(z) = T1c + m(z - Zlc) (6)
RY = (2(2) = 21)* + (2 — 21)” (7)
R} = (x(2) — w2e)* + (2 — 22¢)? (8)

What remains to be found is the points of intersection
of the beam and the mirrors. Substituting Zpeqm(2) into
the mirror equations, the solution emerges in equation

(12):
RI= (210 +m(z — 21c) — 21)? + (2 — 216)> (9

)

RY = (m(z = 21))* + (2 = 210)* (10)
R = (m?* 4+ 1)(z — 21.)? (11)
z=2z1% %ﬂ (12)

By symmetry the second intersection can be found. The
extraneous roots are removed since the angle is less than
/2 radians (eq (13a) and (13b)). The coordinates of the
beam spot are (z1,x(z1)) and (z2,2(22)). Thus AL can
be determined from these coordinates when placed in (3).

(13a)

29 = 22, + (].Sb)

vm? +1

IT1.5. Change in Cavity Length to the Second

Order

A second order approximation for equation (3) can be
found around the point (61, 602) = (0,0) now that the val-
ues in equations (13a) and (13b) have been found. This is
shown in equation (14). A discussion about how this was
found is through Mathematica is located in appendix A.
The g factors are unitless constants; in real system their
values are: g1 = gijtm = —1.0655 and g2 = getry, = —.7794
[7].

AL ~ ALgpg = ———(g26?% + 20,6 62
2nd 21— g199) (9207 + 20105 + g165)
. (14
i=1——
g R,

IV. Hard and Soft Basis
IV.1.

Motivation of Hard-Soft Basis from
Radiation Pressure

When the beam is not aligned with the cavity axis,
the radiation pressure of the beam exerts a torque on
the mirrors. This reduces the pendulum restoring torque
by the mirror suspension which can increase misalign-
ment. Radiation pressure torque depends on the beam
spot displacement. Equation (16) shows the value of the
radiation pressure torque as a function of angle by linking
it with equation (15) [8].

. T1 sa L g2 1] |61
sa = ’ = —— ].5
! L‘Asa] 1—g192 [1 91} {92] 1%)
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FIG. 3. This picture shows what the soft-hard basis angles
look like in the cavity. This figure originated in [5].

. 2P |z 0
Topt = 7 |:.’E;:| = _Kopt |:9;:| (16)

Equation (16) gives a differential equation for torque.
The hard-soft basis is one that diagonalizes the Kopt
matrix in order to solve the differential equation (17)
[8]. Equation (18) is the change of basis matrix for the
diagonalization [5].

Fowt = T0+~40 + (kp + Kopt) 0 (17)
1 —r
s=[1 7] -
— — )2+ 4
, (g1 —92) + 2(91 g2)% + (19)

As laser power increases in the cavity, eigenvectors of
the Kopt have a negative restoring spring constant. As
radiation pressure increases, the eigenvalue for the spring
constant ks, r¢ decreases in equation (20). Thus, control
systems designed to mitigate this are used to keep the
mirror alignment at its operating point.

This radiation pressure example has motivated an in-
teresting soft-hard basis with nice properties. The hard
mode represents rotation of the cavity axis, and the soft
mode represents a vertical displacement of the cavity
axis. Figure 3 shows this.

IV.2. The Cavity Length Change Approximation

in Hard-Soft Basis

Cavity length change equation (14) can be converted
into the hard-soft basis. Just as it diagonalized the ra-
diation pressure matrix, it removes the cross terms from
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FIG. 4. This figure shows how the cavity length changes as a
function of the soft and hard modes.

the cavity length change equation. The result is below
in equation (21). The second equation includes the nu-
merical values for the LIGO Livingston interferometer,
which is calculated by using g factors and the initial cav-
ity length.

L
AL= — " |0? . (quir* +2r+g
2(1 = g192) { silos ? (21)
+ Oaralger® = 2+ g1)|
AL =1810.49 67,;, — 39883.9 07,4 (22)

This equation for hard and soft modes is shown in fig-
ure 4.

V. Two Cavity Picture for Angle-to-Length
Coupling

V.1. Two Cavity DARM Coupling

Since the principle concern for angle to length coupling
is it’s effect on DARM, equation (14) can be extended to
find the effect of its coupling to DARM by subtracting
the X arm length change from the Y arm length change.
The resulting change in DARM due to angular noise is
in equation (23).

AD = AL, — AL,
_ L

2-29192

- (egygl + 29690@ + 920123/))

((931.91 + 20c20;2 + 9201‘29:) (23)

V.2. Pitch and Yaw Convention

Until this point, the paper has worked the pitch case.
The coordinate systems of the test masses are local, with
the normal vector Z pointing towards the other test mass



and Z pointing up. Since § = Z X &, the transverse unit
vectors point in the opposite direction, o = —g;. Thus,
the yaw change of basis matrix acquires an extra minus
sign in the second column of equation (24b) [9]. The
relationship between bases is in equation (24c).

1 —r
Spitch = |:T 1 :| (24&)
1 —r
=[] "
n_ 91 _ esoft _ Ny
0= {92] =85 x {ehard} =S x¢ (24c)

V.3. Differential/Common Hard/Soft Basis

In the two cavity case, it is useful to separate the
hard/soft basis in cavity X and Y into the differen-
tial/common modes. For example, differential hard is
X hard minus Y hard. The change of basis matrix is in
equation (25). [5]:

Odit,n 0 0 1 -1 052
Odif,s ~1f{1-100 Os.y
gcom,h o 5 0 011 eh,z (25)
Ocom.,s 11 0 0 Oy

Equation (26) shows how the differential hard basis is
related back to the mirror basis for both pitch and yaw

[5]

am -r 1 —-r1 th

Oy | r -1 —-r1 Ods

aew - 1 T 1 r ech 26

Ocy » -1 —r 1 r 0. » (262)
QPZQP-Q;,

Oir r 1 r 1 Oan

Oiy |1 —r -1 O4s

Qem B 1 —r 1 T 96}7, 26b

Ocy ’ 1 —r -1 r 0.5 y (26b)
0y =Qy - 9;

Equation (23) for angular noise DARM coupling be-
comes equation (27) in the differential hard basis angular
coupling to DARM. In S, pitch is 4+ and yaw is -. Inter-
estingly, the all the terms are multiples of common times
differential modes.

Appendix E discusses CARM with the opposite case,
where terms are multiples of only common times common
and differential times differential modes.

AD = aechedh + ﬁecheds + 69059dh + Wacseds (273)

2L
—1+ 9192 )
a = pu(—gir* — go + 2r) = —156191 (27¢)
B=+u(—gir +gor —r* +1) = £23379.1  (27d)
v = pu(—r(g2r +2) — g1) = 3897.58 (27e)

M:

V.4. Spectra of Angle to DARM Coupling

Consider the following situation where the DARM cou-
pling is expressed as follows:

AD(t) = a Oan(t)0cn(t) (28)

In the frequency domain:

AD(f) = a Oan(f) * e (f) (29)

Unfortunately, we are in the same situation as equation
(2) where the convolution presents a problem. Thus to
understand the effect on DARM of angular misalignment,
the spectra of angles in the hard-soft basis must be found.

VI. Finding Spectra through Mechanical
Modulation

In order to measure the spectra of the angles of the
hard-soft basis, mechanical modulation will be used.
Currently, the ADS system is used to align the cavity by
modulation/demodulation at frequencies of 7 Hz, below
the detection band. The demodulated output effectively
measures the degree of freedom. This sensing method is
similar to the optical modulation methods in the WFS
and allows the actuators to correct for errors [10]. Ap-
pendix C gives an example of how mechanical modulation
is used in LIGO to detect misalignments.

We will use this sensing method by dithering at a
higher frequency to measure the spectra of the differen-
tial hard and common hard angular degrees of freedom.
The dithering frequency used in the experiment was 48.7
Hz. Our witness is DARM channel which is demodulated
and applied with a lowpass filter.

VI.1. Mirror Angle Modulation Coupling to

DARM

Equation (27) links the mirror degrees of freedom to
change in DARM. Each degree of freedom is dithered ac-
cording to the dithering parameters in 30a. O(t) is the
residual motion of the mirror which causes misalignment
and the sin Qt term is the dithering term from our hard-
ware injection. The DARM channel is multiplied by 30b



in order to demodulate it.

Oan(t) = Oap(t) + Agp sin Qt

Oas(t) = Ous(t) + Ags sin 2t
. (30a)

Ocn(t) = Ocn(t) + Acp sin Qt

Ocs(t) = Ocs(t) + Acs sin Qt
Odmod = Admod sin Ot (SOb)

After modulating and demodulating equation (27) a
lowpass filter is applied. The lowpass filter should reject
all contributions from an 2 term and above. The result
of this lowpass filter is equation (31). The each angle’s
coefficient for this equation is shown below in 31b. Note
how this resulting spectra is a linear combination of all
the degrees of freedom. We would like to find, however,
the spectra of each mode.

LP(AD - Odmod) = CinOan + CasOus

31
+ Cch(ach + C'cs@cs ( a>
Admo
Can = “2200 (4 Ay, + BAes)
A mo
Cas = =5 (BAcn +7Acs)
4 (31b)
Cop = % (aAan + BAgs)
A mo
Ccs = d2 d (6Adh + ’YAds)

VI.2. Finding Spectra of Individual Modes

Since the constants in 31b are functions of the dither-
ing amplitudes of each mode, the amplitudes can be cho-
sen to zero out all but one of the coefficients. This desired
modulation acquires the desired output which is only de-
pendent on one mode. This section will discuss how to
pick the correct amplitudes. First, a linear system is set

up.

Can 00ad}p Adn
Cvds _ Admod 00 ﬂ Y Ads
Co | =72 |aBoo]| | aw]| ©?
Ccs ﬂ Y O O ACS

Since we desire to find the amplitudes in terms of the co-
efficients, the system is inverted. This system shows how
to choose dithering amplitudes for a desired demodulated
result. For example, by setting Cyp to 1 and the other
constants to zero, the resulting spectrum is proportional
to ©4p, in the demodulated output. This amplitude selec-
tion is a convenient way to measure spectra. (from now
on, Agmod Will be set equal to 1)

Aan 92 0 0 ~ -8 Can
gds _ 0 o 706 ((3)4 gds (33)
A oy =\ %70 0 cor

Since the mirrors are driven according to their own lo-
cal angles, the change of basis matrix @ from equation
(27) is used. Equations (34) and (35) give these modula-
tion amplitudes in the local mirror angle basis. The full
form of these matrices is given in appendix B.

Aiw 9 0 0 ~ -8 Can

Aiy P Q . 0 0 —B8 « Cys (34)
ex ay — 52 P ¥y =B 0 0 Cch
ey —B a 0 O Cles p

P

Aiw 0 0 ~ —-pB Can

Ay ) Z 2 g 00 -sa)cu (35)
Acq Tay-—p2 Y Yy =B 0 0 Cen

Acy v ~B a 0 0 Ces /

Yy

g

VI.3. Mirror Angle Calibration

In order to change the angle of a test mass, the penul-
timate test mass (PUM) actuators apply a torque. The

torque arm distance is % and there are torques applied

in the OSEM system, where d = 100mm. Equation (36)
gives the amount of angle change due to the counts. It
is from equation 44 of [9]. TF(f) is the transfer function
between torque on the penultimate test mass to angle of
the end test mass. It was calculated by a model detailed
in that paper [9]. At f = 48.7Hz, the result is:

Cy=2/2%d* Fy« TFy(f)

Cp = 1.604 x 10-18724 (362)
cts

Cyp=N2xdx Fox TF4(f)

Cy = 2.074 x 1013724 (368)
cts

Fy is created by a digital signal which is converted into
volts, which is converted into current, which is used to
create a magnetic field. This magnetic field exerts a force
on the PUM. The numerical values are shown in equation
(37), which are found in [11].

20 V A N
Fy = — . 0.26822.0.0309~
218 cts V A (37)
—10 N
— 6.318 x 10~ 102
cts

Thus, equation (38) shows the formula for the calibrated
Cyap, in pitch, where (acp, acs) are the uncalibrated mod-
ulation amplitudes.

C
Can = Admod %(aach + Bacs) (38)

Appendix D gives a calibration flowchart summarizing
this calibration process.



VI1.4. Amplitude Spectrum Measurement for a

Mode

In order to get the spectra of the differential hard
mode, the amplitudes are set accordingly. The resulting
equation of the measurement is in equation (39). A(f) is
the measurement of the demodulated DARM channel’s
amplitude spectral density in counts, and C 4 is the cali-
bration.

Oun(f) = % CAf) (39)
_ 17CtS
FA =6 x 10 m

The result of this technique is in figure 5 which shows
the spectrum of the calibrated signal.
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FIG. 5. This figure shows the result for the measured spectra.
Above 3 Hz the signal is mostly noise.

VII. Future Inquiry

Now that I have the data from the dithering experi-
ment, [ will work on doing more data analysis. Once I
have my calibrated spectra, I will look at how to apply it
to my model for cavity length change. The spectra may
have patterns which allow for a good approximation for
noise similar to equation (2). I plan on seeing if there is a
suitable approximation for the angle to DARM coupling
of equation (27).
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A. Exact Results from Mathematica

This appendix has the exact values of the coordinates found in section III.4. It also has the full equation for AL
that was found. Equation (A1) was used in Mathematica to find the Taylor series in equation (14) from section III.5.

o (Rl Sil’l(el) — R2 sin(92))2 _ cos (Rl sin(@l) — RQ sin(Gg))Q
AL = Abs <L\/(L + Ry cos(61) + Rz cos(62))? 1=t (91)\/(L + Ry cos(61) + Rz cos(62))? 1

(A1)
(R1 sin(@l) — RQ sin(Gg))Q
- R 0 1+Ri+Ry | — L
2 cos( 2)\/(—L + Ry cos(61) + Rg cos(62))? R
R (61) !
= cos —
! ! ! (R sin(0)—Rysin(62)° (A2)
(—L+ R cos(01)+ Rz cos(02))2
in(61) — in(6
v = I (Sin(‘)l) + M RQ(S;H(' 2(3 ) Rasin(0:))” ) (A3
sin — sin
(L — Ry cos(f1) — Racos(6s)) (—L+1R1 0051(91)—1—21%2 CO:(HZ))Q +1
R
= L - 3
29 (o snld)Fa @ 1 + Ry cos(0y) (A4)
(—L+R cos(01)+ R cos(02))?
. ((Rl sin(@l) — RQ sin(Og))
= Ry sin(6
2 vsin(fy) + —L + Ry cos(01) + Rz cos(62)
. (49)
: . + L — Ry cos(61) — Ry cos(62)
(Ry sin(61)— Ro sin(62))? +1
(—L+R1 COS(91)+R2 COS(ez))2
B. Full Form of Dithering Matrices
Aig —B—qr a+pr —f—ar a+pr Can
Aiy — L _B_’yr Oé+ﬁ7" B+'7T —O[—ﬁr Cds (Bl)
Aey ay—p2\ y=Br ar=p y—pr ar—p Cen
A ) y—Br ar—f fr—vy f-ar ) \Cal/,
Ay =8 a—=pr yr—8 a—pr Can
Ay __ 2 | B=ar Pr—a yw—-B a-pr Cs (B2)
Aex ay — 32 y+pBr rar—f v+ pr —ar—p Cen
Aey y 757’77 ﬁ+0[7”’ "}/+ﬂ7’ 70‘7’76 Ocs y
Ain —0.346205 3.05472 —0.346205 3.05472 Can
Aiy — 104 —0.346205 3.05472 0.346205 —3.05472 Cas (B3)
Ay o —0.418406 1.93982 —0.418406 1.93982 Cen
Aey v —0.418406 1.93982 0.418406 —1.93982 Ces v
A 0.346205 3.05472 0.346205  3.05472 Can
Ay — 104 —0.346205 —3.05472 0.346205  3.05472 Cas (B4)
Acr - —0.418406 —1.93982 —0.418406 —1.93982 Cen
Aey ” 0.418406  1.93982 —0.418406 —1.93982 Ces



C. Dithering Theory

This section is an example from Kawabe’s discussion on how mechanical modulation is used to sense and actively
suppress low frequency motion of test mass angles [10]. It aligns the beam axis with the cavity axis.

To simplify, both mirrors have the same radius of curvature. Let I be the intensity of reflected field. The following
parameters are used: a(v) and a(v — vyg) is cavity reflectance of the fundamental mode and the first higher mode
respectively (which are both constant), a, is the beam waist height and « is the angle of misalignment of the incident
beam and the cavity axis, and wg is the width of the waist.

1= I [|la@)? + 7 (Ja(v = v10) > = la()[?)] (Cla)
az )2 kwya 2
== £ 1b
i)+ (75) o1
1
ay = 5(1‘1 + z2) (Cle)
S ) C1d
Oy = m(lé € ( )
The modulations are:
r1 = X109 + A1 sinwlt (CQa)
Lo = Xog + Ag sinwst (C2b)

Substituting these two modulations in the values for the beam waist displacement a, and angle difference «, into
equation (Cla), and taking a taylor series to first order, the following result is found[10].

0
+ A sin wat 7
61‘2

, 0
I~ [{|a(y)|2 +7y(la(v — v10)|* = |a(y)|2)} * {'y(zlo,xm) + Ap sinwyt (2)73:1

}] (C3)

Applying narrow bandpass filters around each modulation frequency and demodulating, the DC terms remaining
are the two partial derivatives. When the partial derivatives are expanded, they take the following form.

10

d 1 L\’
87;/1 . = ng (1’10 “+ oo + (kw%) (1[,’10 — 1’20)> (C4a)
v 1 L\?

- — [ = — 4
({91'2 20 2’10(2) (mlo + 20 (kwg) (xlo $20)> (C b)

The demodulation sensor returns the values of the partial derivatives of v with respect to z; and x5, which is an
error signal for the cavity. This is a linear system which can be solved for the center displacements. The misalignment
signal it is sent to the actuators to align the cavity.
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D. Flowchart of Calibration

Hardware
Injection
A sin(t)
[cts]

Euler to
OSEM
[cts]

Current

(Al

PUM
Torque to
TST Angle
Model
[rad]

Change in
DARM [m]

E. Interesting findings from CARM/Interpretation of formula for DARM

When the formula for CARM is calculated, the following pattern emerges: all angles are either common squared or
differential squared. This relates to DARM because retrospectively it can be seen that it is the product of a common
and differential angle. Thus, solely common-differential mode products couple into DARM.

20ch0csL (17 — gor + 1% — 1) n 2041045 L (917 — gor + 12 — 1) 0%, L(r(gir —2) +g2)

ACARM =
g192 — 1 g192 — 1 g192 — 1 (Ela)
O L(r(ger +2)+g1)  05,L(r(gir —2)+g2)  03,L(r(g2r +2) +g1)
g192 — 1 g192 — 1 g1g2 — 1

ACARM = —78095.702, + 23379.10.40.5 + 1948.79602, — 78095.762, + 23379.104,045 + 1948.7963, (E1b)
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