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Objectives

I will talk about:

I The angular noise that couples differential arm length (DARM)

I A Fabry-Perot cavity misalignment model

I Measuring test mass angular spectra

I Results of angular misalignment coupling
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Advanced LIGO Simplified Optical Layout

I DARM is gravitational wave output signal
I Angular noises couple to DARM and reduce sensitivity
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Angular Sensing and Control Noise

I Angular sensing and control noise is a major contributor to DARM below 15 Hz
as shown below [1].

I Low frequency sensitivity is important for binary neutron star mergers.

I This noise budget contains linear and non-linear couplings. I want to know
non-linear contribution.

Angular Controls
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What is Angle to Length Coupling?

I Angular misalignments cause a change in length of the Fabry-Perot
cavity.

I The beam is constrained by the two centers of curvature.

I This change in cavity length couples to DARM.
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Change in Cavity Length

The exact solution isn’t simple:

∆L =

(
L
√

(R1 sin(θ1)−R2 sin(θ2))2

(−L+R1 cos(θ1)+R2 cos(θ2))2 + 1− R1 cos(θ1)
√

(R1 sin(θ1)−R2 sin(θ2))2

(−L+R1 cos(θ1)+R2 cos(θ2))2 + 1− R2 cos(θ2)
√

(R1 sin(θ1)−R2 sin(θ2))2

(−L+R1 cos(θ1)+R2 cos(θ2))2 + 1 + R1 + R2

)
− L

But a Taylor series gives a simpler result.

∆L =
L

2(1− g1g2)

(
g2θ

2
1 + 2θ1θ2 + g1θ

2
2

)
Where the cavity g factor is: gi = 1− L

Ri
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Hard & Soft Basis

I LIGO uses the hard-soft basis to understand the mirror setup
(pictured below).
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This leads to a decoupled cavity length change equation:

∆L = Chθ
2
hard + Csθ

2
soft
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Two Cavity Hard & Soft Basis

We can describe the two cavity with combination of hard-soft modes.

I Differential hard: θdh = 1
2

(
θxh − θyh

)
I Differential soft: θds = 1

2

(
θxs − θys

)
I Common hard: θch = 1

2

(
θxh + θyh

)
I Common soft: θds = 1

2

(
θxs + θys

)
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Angular Coupling to DARM

The single cavity model can be extended to the dual cavity case.

∆DARM = ∆Lx −∆Ly = αθchθdh + βθchθds + βθcsθdh + γθcsθds

For Livingston, the constants are equal to:

α = −156191
m

rad2

β = 23379.1
m

rad2

γ = 3897.58
m

rad2
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Discussion of Mirror Static Offset

I We wish to estimate the non-linear angular coupling to DARM

I Each angle has a time series like:

θtot(t) = θ0 + θ(t)

I Therefore, we have set the static offset for each mode, θ0, equal to
zero through our experimental setup
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Measuring Spectra of Modes by Dithering

I Dithered (modulated) all test masses at a set frequency

I Demodulated DARM output gets answer proportional to a single
modes’ spectra (repeated for other modes)

I Dither amplitudes chosen a priori to get single term linear
demodulated output. eg: dmod(DARM) = Cdhθdh

I Find mode spectrum from demodulated output
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Hard-Soft Mode Spectra

I We dithered at at 48.7 Hz to measure the spectra of all the modes

I Above 3 Hz, the spectra are noise
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Transmon QPD Layout

I Transmon QPD are only accurate for high frequency angle
measurement
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High Frequency Mode Spectra

I Used a least mean square fit to match the dither measurement and
Transmon QPD signals at frequencies below 1 Hz [left]

I Transmon QPD signals provide accurate higher frequency spectra up
to 10 Hz [right]
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Angular Noise Estimate

∆DARM = αθchθdh + βθchθds + βθcsθdh + γθcsθds

I Found DARM spectra with the approximation:
F(θ1(t) · θ2(t)) ≈ θRMS

2 θ1(f ) + θRMS
1 θ2(f )

I Non-linear angle to length coupling is small compared to DARM
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Conclusions

Takeaways:

I Angular noise DARM coupling is given by analytic model of test
mass angles

I Dithering technique can be used to find non-linear low frequency
angular spectra

I Transmon QPD could be used to measure high frequency angular
spectra

I From our measurements, non-linear angular noise is not a main
contribution to DARM below 10 Hz

Future inquiry:

I Extend cavity length model to all mirrors in interferometer

I Validate test mass angular measurement technique using other
sensors and simulations
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Extra slide: Constants referenced in paper

Cs =
L(g1r2 + 2r + g2)

2(1 − g1g2)
= 1810

m

rad2

Ch =
L(g2r2 − 2r + g1)

2(1 − g1g2)
= −39884

m

rad2

µ =
2L

−1 + g1g2

α = µ(−g1r
2 − g2 + 2r) = −156191

m

rad2

β = µ(−g1r + g2r − r2 + 1) = 23379.1
m

rad2

γ = µ(−r (g2r + 2) − g1) = 3897.58
m

rad2

r = .87
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