Advanced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
00	00	00			
000	00	000			000000
					00

Implementing Real-Time Calibration in Advanced LIGO Control Software

Dane Stocks Joseph Betzwieser

LIGO Livingston Observatory

LIGO SURF Program, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

nced LIGO detectors Calibration Building the new pipeline L1 testing Summary . 00 00 00 00 000

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

Advanced LIGO detectors
Calibration
Building the new pipeline
L1 testing
Summary

●0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
<

Addendum 00000 000000 00

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Outline

Advanced LIGO detectors

The interferometer

The DARM loop

Calibration

Three pipelines Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

dvanced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
00	00 00	00 000	00		00000

The interferometer

- The interferometer measures changes in the spacetime interval between test masses to detect GWs.
- The arms of a detector are 4 km-long Fabry-Perot resonant cavities.
- When these cavities are held on resonance, small changes in differential arm (DARM) length can be used to reconstruct GW signals.
- A negative feedback control loop, the DARM loop, works to keep the DARM length $\Delta L = L_X L_Y$ constant.

Outline

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Advanced LIGO detectors

The DARM loop

.00

Advanced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
○○ ○●○	00	00 000	00		00000 000000 00

The DARM loop

• The DARM feedback loop suppresses external differential displacements, $\Delta L_{\rm ext}$, to keep the detector on resonance.

Sensing function, C:

Transforms residual displacement into a digitzed error signal, $d_{\rm err}$.

Digital filter bank, D:

Converts d_{err} into d_{ctrl} .

Actuation function, A:

Takes d_{ctrl} and transforms it into a control displacement which opposes the sensed external displacement of the detector.

Advanced	LIGO	detectors	C
00			0
000			0

Calibration

Building the new pipeline

L1 testing

Summai

Addendum 00000 000000 00

The DARM loop

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

anced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendu
	••	00	00		00000
)	00	000			000000

Outline

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines

Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

anced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
	00	00	00		00000
)	00	000			000000
					00

Current calibration process

CALCS (online)

Calibration system running in the front end computers' real-time processors. Uses infinite impulse response (IIR) filtering to produce partially calibrated data: ΔL_{PU} , ΔL_{T} , ΔL_{res} , and ΔL_{ext} .

GDS (online)

Takes output of CALCS and applies corrective finite impulse response (FIR) filters A_{corr} and C_{corr}^{-1} and time-dependent correction factors (kappas) to produce refined h(t).

DCS (offline)

Picks off d_{err} and d_{ctrl} and uses FIR filtering to produce h(t) in high-latency.

vanced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
0	00 •0	00 000	00		00000

Outline

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines

Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

dvanced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
	00 0•	00 000	00		00000

Project motivation

- CALCS introduces systematic errors into ΔL_{ext} , and the GDS pipeline makes corrections before it outputs calibrated GW strain.
- The GDS pipeline operates within the Data Monitoring Tool, which are computers distinct from the front end computers.
- A complete calibration pipeline located in the front end computers would provide operators in the control room with "best possible" calibrated h(t) in very low-latency and remove the redundancy of the dual-system currently in place.

Calibratic 00 00 Building the new pipeline

L1 testing

Summary

Addendum 00000 000000 00

Outline

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines Project motivation

Building the new pipeline Front end model diagram

L1 testing

ASD comparison (live data)

Addendum

Advanced	LIGO	detectors
00		
000		

Calibratio

Building the new pipeline

L1 testing

Summary

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Addendum 00000 000000 00

New front end calibration model

Note: we use FIR filters identical to those used in DCS pipeline.

Calibratio

Building the new pipeline

L1 testing

Summary

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Addendum 00000 000000 00

Outline

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

vanced LIGO detectors Calibration Building

Building the new pipeline

L1 testing

Summar

Addendum 00000 000000 00

Testing new pipeline

- Each FIR filter was coded in C on dedicated testing computers. This includes A_{PU} , A_{TST} , C^{-1} , as well as the sinc table downsampling and cubic spline upsampling. These filters were then installed in a front end model.
- To check the viability of the new front end model, we injected a 600 second sample of past data and compared the strain it calculated with the actual strain output by the DCS pipeline for this GPS time.
- An amplitude spectral density (ASD) plot shows how the amplitudes of each pipeline's strain compare across the entire frequency band of Advanced LIGO searches.

Advanced	LIGO	detectors
00		
000		

Calibration 00

Building the new pipeline $\circ\circ$ $\circ\circ\bullet$

L1 testing

Summary

Addendum 00000 000000 00

ASD comparison

Sac

L1 testing

Outline

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

L1 testing

ASD comparison (live data)

Advanced	LIGO	detectors
00		
000		

Calibratio 00 00 Building the new pipeline

L1 testing

Summary

Addendum 000000 0000000 00

Final strain comparison

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Advanced LIGO detectors oo ooo	Calibration 00 00	Building the new pipeline	L1 testing 00	Summary	Addendum 00000 000000 00

Summary

- We have built and installed a new calibration pipeline to run in the front end computers.
- It uses identical FIR filters as the ones in the DCS pipeline.
- This pipeline will replace CALCS and GDS as the primary online system to produce h(t) with latency ≈ 3 seconds.

Advanced LIGO detectors oo ooo	Calibration 00 00	Building the new pipeline	L1 testing 00	Summary	Addendum 00000 000000 00

Summary

- We have built and installed a new calibration pipeline to run in the front end computers.
- It uses identical FIR filters as the ones in the DCS pipeline.
- This pipeline will replace CALCS and GDS as the primary online system to produce h(t) with latency ≈ 3 seconds.

Any questions?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Addendum 0000

Outline

Addendum

FIR filter comparisons

ced LIGO detectors Ca	alibration I	Building the new pipeline	L1 testing	Summar
00	0	00	00	

Addendum

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Modeling the transfer functions of the DARM loop as FIR filters is an approximation.
- The frequency response of each FIR filter is compared against the frequency domain model of the corresponding function in the DARM loop.
- This is accomplished by running injections through the model and taking transfer functions between appropriate points.

Calibratio 00 00 Building the new pipeline

L1 testing

Summar

Addendum 00000 00000 00

Inverse sensing filter

Calibratio 00 00 Building the new pipeline

L1 testing

Summar

Addendum 00000 00000 00

Actuation PU filter

500

æ

Calibratic 00 00 Building the new pipeline

L1 testing

Summary

Addendum 00000 00000 00

Actuation TST filter

E 990

nced LIGO detectors Calibration Building the new pipeline L1 testing CO OO OO OO OO OO OOO nmary

Outline

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

Advanced LIGO detectors oo ooo	Calibration 00 00	Building the new pipeline 00 000	L1 testing 00	Summary	Addendum
		DCAL			

PCAL ratios

- At LLO, a photon calibrator (PCAL) device at the end test mass of the Y arm is used to calibrate detector response.
- These devices shoot laser light of known wavelength onto the mirrors and generate large displacements.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• A relationship between laser power and test mass displacement can be established.

dvanced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
0	00	00			
00	00	000			000000
					00

PCAL ratios, continued

- Laser power fluctuations at the auxiliary photodetector are recorded.
- These readings are converted into a voltage to displace the test mass according to the detector's response function.

Front end model strain vs. PCAL strain

Ideally, the ratio of the mangnitudes of the two strains at the calibration line frequencies should be 1 and the difference in phase should be 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Advanced	LIGO	detectors	
00			
000			

Calibratio

Building the new pipeline

L1 testing

Summary

Addendum

16.3 Hz line comparison

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

anced LIGO detectors	Calibration	Building the new pipeline	L1 testing	Summary	Addendum
	00	00			
)	00	000			000000

331.3 Hz line comparison

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Advanced	LIGO	detectors
00		
000		

Calibratio 00 Building the new pipeline

L1 testing

Summary

Addendum

1083.1 Hz line comparison

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

nced LIGO detectors Calibration Building the new pipeline L1 ter 00 00 00 000 000

testing

Summary

Addendum

00000

Outline

Advanced LIGO detectors

The interferometer The DARM loop

Calibration

Three pipelines Project motivation

Building the new pipeline

Front end model diagram ASD comparison

L1 testing

ASD comparison (live data)

Addendum

00 00 Building the new pipeline

L1 testing

Summary

Addendum

00000 000000 0•

FE/DCS strain transfer function

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの