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Abstract: Generic black hole binaries emit gravitational waves anisotropically due to mass and
spin asymmetries. Gravitational waves carry linear momentum away from the binary in a preferential
direction which causes the binary to recoil during the late inspiral and merger phases of evolution.
Black hole recoils (or kicks) result in emitted gravitational waves that are Doppler shifted during
merger and ringdown. Gravitational wave observations of such a Doppler shift will allow for the
first direct detections of black hole kicks. We extend existing phenomenological analytic frequency-
domain waveform approximants to model gravitational waves from a kicked back hole binary. Our
kicked frequency-domain model is quick to calculate and can be used to (i) explore kick detectability
over large regions of parameter space, (ii) address possible degeneracies between kicks and other
binary parameters, and (iii) place projected constraints on black hole kick velocities with current
and future detectors.

I. INTRODUCTION

Generic black hole binary systems are expected to con-
sist of two black holes with unequal masses and nonzero
spins. As a result, generic binaries will contain some
amount of asymmetry that leads to an anisotropic emis-
sion of gravitational waves throughout the binary evolu-
tion. Gravitational wave beaming leads to a net linear
momentum flux that forces the binary to recoil by conser-
vation of momentum. This recoil, or “kick,” is present
throughout the duration of the binary’s evolution and
becomes significant during the late inspiral and merger
phases.

As gravitational waves are emitted from a kicked bi-
nary during the final stages of coalescence, they are
Doppler shifted along the line of sight. Black hole kicks
are only significant at the end of the evolution of the bi-
nary, so gravitational waves that are emitted during the
early inspiral will not be significantly Doppler shifted.
Thus, there will be a relative dephasing of the resulting
kicked waveform from the “non-kicked” waveform one
would expect to measure from a binary system at rest
with the same intrinsic properties.

If the kick velocity is large enough that the kicked
waveform deviates significantly from the non-kicked
waveform, and if gravitational wave detectors have a high
enough signal-to-noise ratio (SNR) during the merger-
ringdown phases, then black hole kicks should be re-
solvable. Indeed, Gerosa and Moore [1] determined that
black hole kicks, in principle, could be directly detected
using space-based and future ground-based gravitational
wave detectors.

The prospect of a black hole kick detection is entic-
ing for a number of reasons. Electromagnetic candidates
have been identified that display certain signatures of
black hole kicks [2, 3], but there are still no unambiguous
detections. For instance, general relativity (GR) predicts
that gravitational waves carry linear momentum, but this
prediction has yet to be tested. Gravitational waves can
provide the first direct detections of black hole kicks, fur-
ther testing and confirming aspects of GR in the strong-

field regime.
Though we expect that gravitational wave detectors

will be able to detect black hole kicks, there have been
no studies to date about potential degeneracies between
kicks and other binary parameters. In order to un-
derstand how well we will be able to distinguish black
hole kicks, it is important to address these degenera-
cies. However, in order to address degeneracies and de-
termine how well we could constrain black hole kicks
using gravitational wave detections, we need a kicked
frequency-domain waveform that is quick to calculate
and that will allow us to explore a large region of pa-
rameter space. Currently, frequency-domain waveform
approximants contain no information amount black hole
kicks. With an analytic frequency-domain waveform ap-
proximant, we will be able to explore degeneracies and
constraints through a Fisher analysis.

This project resulted in the development of such an
analytic kicked frequency-domain waveform approximant
that will be used to place constraints on black hole kick
velocities and explore possible degeneracies present in the
waveform. The remainder of this paper will discuss the
methods by which this waveform was developed, present
current results, and provide some future directions for
this research.

II. APPROACH AND METHODS

In order to create a kicked frequency-domain wave-
form, we first have to understand how a black hole kick
will effect the emitted gravitational waves. The black
hole binary will be moving with some non-constant kick
velocity throughout the coalescence of the binary, there-
fore the kick velocity is a function of time. Fortunately,
numerical relativity simulations suggest that kick veloci-
ties can be represented in the time domain generically as
Gaussian (in the acceleration) with a width that is pro-
portional to the total mass of the system [4, 5]. This ob-
servation considerably simplifies gravitational wave mod-
eling and will be used as a working assumption.
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FIG. 1. Plot of frequency as a function of time. This demon-
strates the divergent behavior of the analytic SPA (dashed
grey line) for frequencies greater than the ringdown frequency
(horizontal dotted line). The numerical results (solid blue
line) for frequency as a function of time are plotted for com-
parison.

In order to develop a kicked waveform model, we in-
troduce the kick velocity into the waveform through a
Doppler shift of the mass. The mass is the only binary
parameter that is degenerate with redshift and is thus the
parameter that will contain this kick information. How-
ever, in order to be implemented into a frequency-domain
waveform approximant, we need the kick velocity as a
function of frequency instead of time. To do this, it is suf-
ficient to find a relationship between time and frequency
to obtain the velocity as a function of time. The wave-
form that we are interested in modifying to include black
hole kicks is the nonprecessing spin-dependent inspiral-
merger-ringdown frequency-domain waveform approxi-
mant PhenomD [6, 7].

A. Stationary Phase Approximation

It is instructive to begin with an overview of the re-
lationship between time and frequency for time-domain
waveforms1. Let h(t) = Aeiφ(t) be a gravitational wave-
form in the time-domain. The frequency as a function of
time is defined by

f(t) ≡ 1

2π

d

dt
φ(t). (1)

If we had an analytic time-domain waveform, it would be
simple to calculate frequency as a function of time. How-
ever, we are using frequency-domain waveforms that are

1 The derivation that is shown here is following that given in
Ref. [8].

fast to calculate and allow us to explore kick detectability
for a variety of different noise curves.

Let us now define our frequency-domain waveform as
h̃ = AeiΨ(f). In the frequency-domain, the phase is given
as [8, 9]

Ψ(f) = 2πft∗(f)− φ(t∗(f)) +
π

4
(2)

where t∗ is some constant time about which the integrand
of the Fourier transform was expanded.

Differentiating this with respect to frequency, we ob-
tain

dΨ(f)

df
= 2πt∗(f) + 2πf

dt∗
df
− dφ(t∗)

dt∗

dt∗
df

(3)

which can be reduced using Eq. 1 to

dΨ(f)

df
= 2πt∗(f). (4)

We can then solve Eq. 4 for t∗(f) which gives

t∗(f) =
1

2π

dΨ(f)

df
.

A mathematical asymptotic analysis technique called the
stationary phase approximation (SPA) allows for the
parametrization of time as a function of frequency2 [9,
10]. Thus, in the SPA, t∗(f) = t(f) and we obtain an
analytic function for time as a function of frequency as
given by

t(f) =
1

2π

dΨ(f)

df
. (5)

B. Implementation

To check that the SPA reproduces numerical results,
we performed a numerical inverse Fourier transform of
the frequency-domain PhenomD waveform. We then cal-
culated the phase from the h+ and h× components of the
time-domain waveform to obtain f(t) from Eq. 1. The
comparison between the SPA and the numerical calcu-
lation is shown in Fig. 1. Where the amplitude begins
changing more rapidly than the phase, the SPA diverges
from the numerical approximation. However, as shown
numerically, the frequency can be approximated as a con-
stant in time for all times after ringdown. As shown
in Fig. 2, the kick velocity in the time- and frequency-
domains have very different profiles. In particular, the
velocity as a function of time is not smooth as we have

2 The SPA only holds in regimes in which the amplitude is chang-
ing more slowly than the phase

2



Black Hole Kicks Katie Chamberlain

0.0

0.2

0.4

0.6

0.8

1.0

-2e
-02

0e+
00

2e-
02

4e-
02

6e-
02

8e-
02

1e-
01 150 200 250 300 350 400 450 500

v
/c

Time [s] Frequency [f ]

FIG. 2. Left: Kick velocity as a function of time. Right: Kick velocity as a function of frequency. Note that the scaling on
the time and frequency axes is demonstrative of the time-scale over which the kick is imparted. The kicks represented here are
nonphysical kicks of ∼ 0.8c imparted to a binary with total mass 40M�.

demanded that frequency is constant after ringdown. We
expect that this feature will not impact our future anal-
yses.

We implement black hole kicks into PhenomD using
the relationship between time and frequency given by the
SPA in Eq. 5 and with f = fRD the ringdown frequency
for all times after ringdown. We redshift the mass as a
function of the kick velocity in the following way:

m→ m′ ≡ m(1 + vk(f)). (6)

However, since

A ∝ D
5/6
L

M
, (7)

we must also redshift the luminosity distance as

DL → D′L ≡ DL(1 + vk(f))6/5 (8)

because we wish for the overall amplitude of the wave-
form to remain the same at early times where the kick is
insignificant.

III. RESULTS

Upon implementing these two redshifts in the
frequency-domain waveform, we obtain the waveform
shown in Fig. 3. Note that the kicked waveform matches
the non-kicked waveform in the inspiral where the kick
velocity is approximately zero. During the intermedi-
ate regime, the kicked waveform begins to deviate from
the non-kicked waveform, and diverges drastically near
the merger-ringdown frequency. The kicked waveform
overlaps the redshifted-mass waveform for all frequencies

larger than the ringdown frequency, where the binary be-
gins moving with a constant velocity. This will allow us
to perform a Fisher matrix analysis with high accuracy,
as our waveform and it’s derivatives are analytic.

IV. FUTURE DIRECTIONS

Armed with a kicked frequency-domain approximant,
we are now in a position to complete a Fisher analy-
sis that will allow us to address waveform degeneracies
and to explore kick detectability for various gravitational
wave detectors. However, before performing this analy-
sis, we will modify PhenomD to include precession (Phe-
nomP), as done in Ref. [11]. This will provide us with
a more realistic waveform to determine how well we will
be able to constrain kick velocities.

In addition to the improvement of our current wave-
form model, we will also test our kicked frequency-
domain waveform against the kicked time-domain wave-
form model of Ref. [1] to determine how well any de-
viations could be resolved by future gravitational wave
detectors. If we find that there are large deviations be-
tween the time- and frequency-domain kicked waveforms,
we will have to determine how to more accurately ap-
proximate time as a function of frequency for times after
merger.
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FIG. 3. Gravitational wave amplitude as a function of frequency for a binary with total mass 40M� and anti-aligned spins
∼ 0.1 at a distance of 1Mpc. The black line is the non kicked waveform as provided by PhenomD. The blue line is the same
waveform using the final redshifted mass value. The dashed grey line is our kicked waveform model. The vertical grey lines
are, respectively, the frequency of transition from the inspiral to the intermediate regime, the frequency of transition from the
intermediate to the merger-ringdown regime, and the ringdown frequency [6, 7]. To better appreciate the details, the plot
on the right shows a restricted region of the plot on the left in which is it easy to see the agreement between the redshifted
waveform and the kicked waveform for large frequencies.
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F. Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett.
113, 151101 (2014), arXiv:1308.3271 [gr-qc].

4

http://dx.doi.org/10.1103/PhysRevLett.117.011101
http://dx.doi.org/10.1103/PhysRevLett.117.011101
http://arxiv.org/abs/1606.04226
http://dx.doi.org/10.1155/2012/364973
http://arxiv.org/abs/1202.1977
http://dx.doi.org/10.1093/mnras/stu2049
http://dx.doi.org/10.1093/mnras/stu2049
http://arxiv.org/abs/1405.2072
http://dx.doi.org/10.1103/PhysRevD.77.044028
http://dx.doi.org/10.1103/PhysRevD.77.044028
http://arxiv.org/abs/0708.4048
http://dx.doi.org/ 10.1103/PhysRevD.77.124047
http://arxiv.org/abs/0707.0135
http://dx.doi.org/10.1103/PhysRevD.93.044006
http://dx.doi.org/10.1103/PhysRevD.93.044006
http://arxiv.org/abs/1508.07250
http://dx.doi.org/10.1103/PhysRevD.93.044007
http://dx.doi.org/10.1103/PhysRevD.93.044007
http://arxiv.org/abs/1508.07253
http://dx.doi.org/10.1088/0264-9381/33/5/054001
http://dx.doi.org/10.1088/0264-9381/33/5/054001
http://arxiv.org/abs/1602.02413
http://dx.doi.org/ 10.1103/PhysRevD.89.109901, 10.1103/PhysRevD.80.084001
http://arxiv.org/abs/0906.0313
http://dx.doi.org/10.1103/PhysRevLett.113.151101
http://dx.doi.org/10.1103/PhysRevLett.113.151101
http://arxiv.org/abs/1308.3271

	Towards a Phenomenological Frequency-Domain Waveform Model for Black Hole KicksMentor: Davide Gerosa.1
	Abstract
	Introduction
	Approach and Methods
	Stationary Phase Approximation
	Implementation

	Results
	Future Directions
	Acknowledgments
	References


