
1 Introduction: Why Cosmography?

The term cosmography was first coined by Humbolt in the late 1800s as an umbrella over the subsets of the
descriptive astronomy, Uranography, and terrestrial mapping, or geography. Cosmography has been defined
as the science of mapping or charting the world or the universe, but in the context of modern astrophysics,
refers to making precision measurements of cosmological parameters. Cosmography measurements rely on
this fundamental equation, relating the luminosity distance to the source to its redshift and the cosmological
parameters:

DL =
c(1 + z)

H0

∫ z

0

dz′

[ΩM (1 + z′)3 + ΩΛ(1 + z′)3(1+ω)]1/2
(1)

where H0 is the hubble constant, z is the redshift, c is the speed of light, ΩM and ΩΛ are the dimensionless
matter density and dark energy density parameters of the universe, and ω determines the equation of state
of dark matter. In the local universe, one can make measurements of the Hubble constant; the other
cosmological parameters can only be constrained using sources from the high-redshift universe. In order
to constrain the values of these cosmological parameters, one requires an independent measure of both the
redshift and the luminosity distance to the source. One of the most popular methods involves using white
dwarf supernovae as standardizable candles. The most viable model for creating such explosions, known as
the doubly degenerate model, was hypothesized to occur when a merger of the white dwarfs exceeded the
Chandrasekhar limit, and thereby had a standard intrinsic luminosity at merger. As such, by measuring
the observed flux of the Type Ia supernovae, one could determine the distance to the source. More recent
evidence suggests that that before using Type Ia supernovae as standard candles, one must correct for their
lightcurves, which follow an established trend, and then calibrate the peak brightness using cepheid variable
stars, one rung down from Type Ia supernovae in the cosmic distance ladder. The calibrated peak brightness
would provide the distance to the source. Independently, one can determine the redshift of the source, using
standard methods to analyze the SNe spectrum (C. Ngeow and S.M Kanbur, 2006). However, currently,
such measurements face large systematic errors due to the fact that their progenitor composition is still
largely a mystery (M. Sullivan et al., 2006). Using cosmographical measurements from Type Ia supernovae,
astronomers determine H0 to be 73 km/s/Mpc with a one percent errorbar (C. Ngeow and S.M Kanbur,
2006). However, recent measurements made by the Planck satellite determine the hubble parameter to be
closer to 67 km/s/Mpc within two percent error. This secondary method employs the CMB power spectrum
to determine the characteristic size scale of structure formation (baryon acoustic oscillation radius) and
relate it to the redshift at which the CMB was released (z ≈ 1089). This large discrepancy regarding the
acceleration rate of expansion of the local universe could be reconciled using gravitational wave cosmography.
There are a few different proposed methods for performing cosmography using gravitational wave signals
from both binary neutron star mergers and neutron star-black hole mergers. One such method involves a
coincident short GRB observation with a BNS or NS-BH inspiral signal detection. Using the spectra of the
optical counterpart of such an event, one can either determine redshift using spectral analysis, or localize
the source to its host galaxy and thereby infer the source redshift from the galaxy’s redshift. From the GW
signal-to-noise ratio, one can find the distance independently, using the equation relating S/N to distance,
D:

ρ ∝ 1

D

f1∫
f2

f−
7
3

S(f)
df (2)

where ρ is the signal to noise ratio, S(f) is the noise as a function of frequency, f−
7
3 is the approximate

scaling law of a BNS merger signal, and the expression is integrated from the lower bound of the frequency
range the detector is sensitive to (20-30 Hz for Advanced LIGO) to the upper bound of the frequency at which
the merger is expected to occur (this frequency is referred to as fISCO, which is a function of the masses
of the sources in the system) (Singer et al., 2014). Because gravitational wave signals are well-modeled
by numerical relativity, they are considered to be standard sirens, because we can obtain the distance to
the source using its amplitude or S/N. Since the measures of redshift and distance described above are
calibration-independent, compact binary coalesences have the potential of being used the same way as Type
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Ia supernovae to measure distance scales (and the expansion rate) of the universe. Another method described
in (Messenger et al., 2012) outlines a measurement of the redshift of the BNS or NS-BH merger by locating
the signature of tidal disruption in the gravitational wave signal itself. Such a measurement would require
a high enough signal-to-noise ratio to be able to easily distinguish from the noise. Currently, by assuming
a cosmological model as well as values for the cosmological parameters in equation [1], one can infer the
source-frame masses. However, if with next generation detectors we are able to tightly constrain the neutron
equation of state, then, using the frequency at which tidal deformation occurs, one can break the degeneracy
between mass and redshift, and thereby find both redshift and distance from the gravitational wave signal
alone. An alternate method has been outlined in (Messenger et al., 2014) in which a typical BNS merger
results in a hypermassive neutron star (HMNS) in the postmerger phase, that delays formation into a black
hole, and has a unique signature in the gravitational wave signal that can beused to break the mass-redshift
degeneracy. However, such studies are only possible with next generation detectors. The signal-to-noise
ratios, as well as the sensitivities to distant sources are too low using second generation detectors; thus, this
study, which will focus on the first two methods of cosmography with gravitational waves, involves networks
of next generation detectors.

2 Goals

Due to the limited scope and time span of this two-month time period, we narrowed down this cosmogra-
phy study to a few specific research questions we are interested in addressing. The overarching goal is to
determine how well we can constrain the Hubble constant in the local universe using gravitional waves. In
particular, our aim is to quantify the uncertainties in the redshifts and distance measures we expect to mea-
sure using these two methods, as well as the associated systematic biases with making those measurements.
Some of the systematic biases we identify include:
• Malmquist bias - This bias occurs as a result of observing only the brightest sources in the sky, and
neglecting to observe sources that are dimmer. This is the most likely explanation for why the number of
gamma-ray bursts we observe at low flux is far less as compared to the theoretical flux distribution of gamma
ray bursts (BATSE data).
• Distance/inclination angle degeneracy - Similar to the mass-redshift degeneracy, due to the fact that we
determine the distance to the source from the signal-to-noise ratio of the signal, it is difficult to tell whether
the loudness of the signal is directly due to the distance to the source, D, or the source inclination angle, ι
(discussed below). Such a bias will affect our ability to accurately measure the source’s distance from Earth.
• Face-on binary selection effect - Due to the gravitational wave antenna patterns that present interferom-
eters are sensitive to, we anticipate there to be a bias towards measuring more face-on (ι = π/2), rather
than edge-on (ι = 0) binary systems, due to the fact that face-on binaries produce detectable plus and cross
polarization patterns. Similarly, the detector is more likely to detect sources that are directly overhead, as
compared to sources closer the the horizon between the two detectors.
• Neutron star equation-of-state - While in the first cosmography method, we can treat the neutron stars as
point masses since the redshift measurement comes from EM spectra, in order to determine the redshift from
the tidal disruption frequency, we must assume a neutron star equation of state. There have been several
proposed equations of state for neutron stars in the literature, though testing those equation-of-state models
is, at present, very difficult due to the limitations of using telescope observations of neutron stars. Through
detections of gravitational waves, scientists hope to be able to constrain neutron star equations-of-state.
However, for the purpose of this project, we will assume an equation of state, since we do not yet have a
confirmed detection of an NSBH system. For the purpose of our redshift calculation, we may use either
the A18+dv+UIX model or the A18+UIX model from Akmal, Pandharipande, and Ravenhall (1998). Any
choice of the neutron star equation of state presents biases in our mass, and therefore redshift, measurement.
• Calibration uncertainty - Feedback control of the gravitational wave interferometer introduces both sta-
tistical as well as systematic uncertainties into our measurement of gravitational wave strain. Initially, a
combination of astrophysical strain and noise enter the interferometer, causing a differential arm length
change, inducing the true detector response, which outputs a digital error signal in counts. That error signal
is then converted back to strain through the modeled response function, resulting in a controlled arm length
change, from which the feedback control process reconstructs the gravitational wave strain. Calibration of
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the interferometer is performed by shooting a photon calibration laser (of far lower frequency than the laser
used in the interferometer) at the test masses, inducing their motion, and measuring it. The discrepancy
between the true response function and the modeled response function is the source of calibration uncertainty
in the interferometer (Cahillane et al., draft in progress).

Finally, we would like to propose ways of reducing these uncertainties and biases while performing cos-
mography with next generation gravitational wave detectors.

3 Description of Proposed Methods

Gravitational wave source are considered to be standard sirens due to the fact that their signals are well
modeled, and we can determine the distance to the source using the signal amplitude. The distance to
the source scales roughly inversely with the signal-to-noise ratio of the signal. Because we are interested in
cosmography, we must consider the difference between the co-moving distance and the luminosity distance
to a gravitational wave source. The luminosity distance is simply the co-moving distance multiplied by
(1+z), and so is a function of the redshift of the source. Here, what we propose to measure directly from
the signal-to-noise ratio is the source’s luminosity distance.

3.1 Short GRB EM Counterpart method

For at least a small fraction of BNS mergers, we anticipate there to be an EM counterpart to the gravitational
wave signal. The current working hypothesis is that BNS and NSBH systems are the progenitors for short
GRBs. As shown by Metzger and Berger 2012, there are several different kinds of counterparts we can
expect from a short GRB. Seconds after the merger, we could get gamma-ray emission from the GRB.
Between hours to days surrounding a signal detection, we may observe optical emission from the GRB
afterglow, as well as radio emission months after the signal is detected. While detecting a counterpart from
the afterglow of the GRB may be challenging due to its dimness, the fact that the emission is detectable in
longer wavelength bands for a longer timescale makes such coincident detections more plausible. The fact
that jets from GRBs are beamed make them generally less likely to detect. However, the most promising
counterpart for a BNS merger may be a kilonova, or the emission from the NS ejecta interacting with
the surrounding gas and dust as the masses in the binary merge. This emission is predicted to be in the
optical or the infrared (Metzger and Berger, 2012). One method of determining the redshifts of GW sources
involves making a coincident GW-EM detection using large FOV telescopes, and following up the source
with a spectrometer to obtain the source’s redshift. We investigated the possible next generation telescopes
that would a) have large enough FOV to be able to follow-up our BNS and NSBH detections, and b) have
large aperture instruments capable of obtaining accurate source redshifts. A secondary method, involving
localizing a source down to its host galaxy and using the galaxy’s known redshift as the source’s redshift
would only involve using large FOV telescopes; however such a method would involve determining which
galaxies are statistically favored as compared to others, as we anticipate there to be several galaxies within
our localization regions in the next generation. Nevertheless, we include a table below with next generation
telescopes that will survey galaxies as well as transients. The telescopes listed in the table below include the
Large Synoptic Sky Survey Telescope (LSST), the Zwicky Transient Facility (ZTF), the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS), the Dark Energy Camera (DECam), the Wide Field
InfraRed Survey Telescope (WFIRST), the Wide Field Optical Survey (WFOS) telescope, as well as the
Transient Astrophysics Probe X-Ray Telescope (TAP XRT). The next generation instruments we choose are
not gamma-ray telescopes. In general, telescope observations in lower wavelength bands (x-ray and below)
tend to have better localizations, which will allow us to more accurately obtain the source redshifts.

The degree of localization required for our gravitational-wave sources in the next generation is largely a
function of the brightness of the source and the telescope field-of-view, and telescope aperture. If the source
is below 24 mags in brightness, it is currently possible to search sky regions spanning 1000s of square degrees
using wide FOV optical telescopes. However, to observe dimmer sources, or sources in lower wavelength
bands, localizations of 100s or 10s of square degrees will be necessary in order to build a population of
coincident GW-EM compact binaries, since larger aperture instruments will be capable of detecting dimmer
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Table 1: Third Generation Telescope Parameters

Telescope FOV Sensitivity Slew Time Mean Effective Aperture Wavelength Band
(deg2) (mags) (s) (m) (s)

LSST 9.62 25 5-12 8.4 optical
ZTF 47 20 15 1.2 optical

Pan-STARRS 7 30 10 1.8 optical
DECam 3 23 35 4 optical
WFIRST 0.281 26-27 68 2.4 infrared
WFOS 0.01 - - 6.5-10 optical

TAP XRT 1 23-24 - 0.08 x-ray

sources, but may not have the capacity to search a wide sky region. LSST, which has both a large FOV as
well as a large aperture appears to be our most promising telescope at present for third generation follow-up.

3.2 Tidal Disruption method

Gravitational wave signals provide an accurate measure of the chirp mass of the gravitational wave source,
rather than the individual source component masses. The chirp mass is given by:

Mchirp =
(m1m2)3/5

(m1 +m2)1/5
(3)

which can also be re-expressed in terms of gravitational wave frequency. However, the measurement of the
chirp mass from the signal is redshifted; for previous detections, we have assumed a given cosmological model
(usually Friedmann-Robertson-Walker) and used the theorized values of H0, ΩΛ, ΩM , and ω pertaining to
that model, to determine the redshift of the binary black hole source from the distance formula given by
equation two. Since the objective of cosmography is to determine how the distance relates to the measured
redshift, in order to do cosmography using gravitational wave measurements alone, we require a way of
breaking the mass-redshift degeneracy. A visible signature of the black hole disrupting a neutron star in a
NSBH coalescence waveform would provide us precisely with that. By plotting the fourier transform of the
NSBH gravitational waveform, one can determine the frequency at which tidal disruption occurs. We can
re-express the frequency of gravitational waves in terms of the masses in the binary, using the fact that the
gravitational wave frequency, fGW = 2forb, the orbital frequency. Although in reality, the orbital frequency
is derived from full general relativity, we can obtain a zeroth order approximation of it using Kepler’s 3rd
law and the relationship between the radius of innermost stable circular orbit (ISCO) of a black hole and its
spin parameters. Here, we assume that the tidal disruption frequency is equivalent to the ISCO frequency of
a black hole of mass equivalent to the total mass of the system. For such a black hole, from the Kerr metric,
we obtain:

aISCO =
6GMBH

c2
(3 + Z2 ∓

√
(3− Z2)(3 + Z1 + 2Z2)) (4)

Here, Z1 = 1 + (1− χ2)1/3[(1 + χ)1/3 + (1− χ)1/3], and Z2 = (3χ2 +Z2
1 )1/2, and χ is the dimensionless spin

parameter J/M2, where J is the angular momentum of the black hole, and MBH is the black hole’s mass.
Then, forb = 2π / T, where T is defined by Kepler’s 3rd law as:

R3

T 2
=
G(m1 +m2)

4π2
(5)

and, replacing T with 1/f2
orb, we can write, in terms of the system parameters:

f2
orb =

G(m1 +m2)

4πa3
ISCO

(6)
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Table 2: Initial Parameters of BNS and NSBH systems

M1,NS M2,NS χ1,NS χ2,NS

1.2 1.4 0.00 0.00
1.2 1.4 0.05 0.05
1.4 1.4 0.00 0.00
1.4 1.4 0.05 0.05
1.6 1.2 0.00 0.00
1.6 1.2 0.05 0.05

M1,NS M2,BH χ1,NS χ2,BH

1.2 7 0.05 0.99
1.2 7 0.00 0.00
1.4 12 0.05 0.99
1.4 12 0.00 0.00
1.6 14 0.05 0.99
1.6 14 0.00 0.00

But aISCO is a function of the spin parameters, so we can express the gravitational wave frequency, f2
GW =

4 ∗ f2
orb,in terms of the equivalent black hole mass and spin parameters, and some constants:

fGW ≈
c3√

216πGMBH

(3 + Z2 ∓
√

(3− Z2)(3 + Z1 + 2Z2))−3/2 (7)

Since we are looking at tidal disruption, we recognize that the gravitational wave frequency is the same
as the ISCO frequency, where tidal disruption occurs. Writing this more compactly in terms of S(χ), the
dimensionless portion of the aISCO expression containing all of the spin parameters, we find:

fTD ≈
c3√

216πGMBH

S(χ)−3/2 (8)

Of course, in order to find the true tidal disruption frequency of the system, or the ISCO frequency of
the equivalent black hole, we need to perform the calculation in general relativity. Nevertheless, this method
can be employed to find the zeroth order approximation for the way the ISCO frequency scales as a function
of the total mass of the system. Identifying the frequency at which tidal disruption occurs will allow us to
relate the mass that we measure, Mchirp(1+z) to the TD frequency we derived, and calculate the mass and
redshift using a system of equations. Thereby, the main limiting factor to how well we can measure the
redshift using this method is our ability to determine the TD frequency from the signal’s fourier transform.

4 Waveform Visualization

In order to gain insight into how the component masses and spins affect gravitational waveforms of BNS and
NSBH binaries, we simulated time domain waveforms of both types of systems using the lalsuite directory.
For the BNS systems, we employed a SpinTaylorT4 approximant, and for the NSBH systems, we used the
IMRPhenomB template approximant. We chose six different BNS and NSBH systems each, of which three
of each type of system shared the same component masses, but had varied spins. We allowed our neutron
star masses to range from 1.2-1.4Msun, the spins to vary from 0.01-0.05, the black hole masses to vary from
7-14Msun, and the spins vary from 0-0.99. Here, the spins are aligned and refer to the spin’s z-component;
the x- and y- components of the spin are assumed to be zero. Shown below is a table of the parameters we
used for our six simulated BNS waveforms:

We examine systems of the same masses with minimal and maximal spin in order to clearly see the effect
of spin on the BNS waveform. We plot h(t),the time domain strain data, the RMS signal amplitude in the
time domain, as well as the amplitude spectral density in the frequency domain. We expect to observe a
power-law relationship in the ASDs as a function of frequency in the BNS merger waveform. For a case with
NSBH mergers, accurate waveform approximants will allow us to determine the frequency at which tidal
disruption occurs, shown in the ASD of the NSBH merger. However, with the IMRPhenomB approximant
we employed, we do not expect to see any tidal disruption signature in the ASD. The plots for the different
scenarios are shown below.

What we observe is that for BNS mergers, the effect of spin in the time domain strain data for systems
of the same mass with no spin and maximal spin is nearly negligible. The colored lines show gravitational
waveform of BNS systems with maximal spin, and the dotted line indicates another system of the same
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Figure 1: Time domain strain data for var-
ious BNS systems

Figure 2: Zoomed in time domain strain
data for various BNS systems

Figure 3: Time domain RMS amplitudes
for various BNS systems

Figure 4: Time domain RMS amplitudes
for various NSBH systems

mass but without spin. Similarly, when we plot the BNS RMS amplitude (constructed from adding the real
components of the plus and cross-polarization strains to one another), it is clear from the fact that the dotted
line plots directly on top of the solid colored line that the effect of spin is hardly perceptible. However, the
plots suggest that more massive systems merge more quickly, and thereby in the RMS amplitude curves, the
steep power-law behavior near the merger is shifted to the left for more massive systems.

Due to the fact that our waveform in the time domain is finite, we must examine its frequency-domain fast
fourier transform (FFT) only in a limited range of frequencies. The FFT assumes that the input time-domain
waveform continuously repeats itself for infinite time, which will not be the case. Thereby, we must be wary
of edge-effects when analyzing our FFTs. Since we start our signal time domain waveforms from a minimum
frequency of 10 Hz, we assume that the waveform is accurate above 20 Hz. In performing the FFT, we chose
a sampling frequency of the power of two closest to twice the ISCO frequency, from the Nyquist sampling
theorem (fsample = 2fmax). Here, we take our maximum frequency to be the ISCO frequency, since the
waveform approximants we use generally model up to the merger. Thereby, we can only trust the FFT data
up to fISCO. In computing the FFTs, we faced a major challenge that the FFTs are computationally very
costly to compute; our time-series data have a resolution of 1

4096 s on average. We do not display the FFTs
of these signals in the frequency-domain, but our next step will be to obtain the frequency domain strain
data for each of these systems, as they are the most valuable component for identifying the tidal disruption
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Figure 5: Time domain strain data for var-
ious NSBH systems

Figure 6: Zoomed in time domain strain
data for various NSBH systems

frequency.
For NSBH systems, however, the change in the black hole spin creates a perceivable visual difference in

the time domain strain data. We observe that a system with spin has a waveform that is phase-shifted with
respect to the spin-less waveform; however the direction and amount of the shift is not the same in each
scenario. It appears that systems that are less massive overall experience a larger phase shift with addition
of spin.

This document is a record of our preliminary steps in gaining insight into the different aspects involved
in our project. While we may not have made any significant progress towards our goal of measuring the
systematic biases and quantifying the uncertainties involved in doing cosmography with gravitational waves,
we have identified specific sources of error we are interested in further investigating, and hope to use these
initial steps as a foundation to guide our project in the upcoming weeks.
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