Using NSBH Tidal Deformation for GW Cosmography with 3G Detectors

Shreya Anand under the guidance of Dr. Alex Urban, California Institute of Technology Caltech Summer Undergraduate Research Fellowship August 25, 2017

Satyaprakash, Schutz, and Van den Broeck, 2010

Cosmography

- Cosmological Parameters:
 - H₀: Hubble constant
 - Ω_M: matter density
 parameter
 - Ω_Λ: dark energy density parameter
 - ω: determines dark matter equation of state
- Necessary tools: independent measures of luminosity distance (D_L) and redshift (z)

Figure 3: The dimensionless luminosity distance $D_{\rm L}/D_{\rm H}$. The three curves are for the three world models, $(\Omega_{\rm M}, \Omega_{\Lambda}) = (1, 0)$, solid; (0.05, 0), dotted; and (0.2, 0.8), dashed.

 $D_L = \frac{c(1+z)}{H_0} \int_0^z \frac{dz'}{\left[\Omega_M (1+z')^3 + \Omega_\Lambda (1+z')^{3(1+\omega)}\right]_2^{1/2}}$

Planck CMB image

Type la Supernovae lightcurves

- Disagreements between our best models:
 - Planck: $H_0 = 67 \pm 1.2 \text{ km/s/Mpc}$
 - Type Ia Supernovae: $H_0 = 73 \pm 0.7 \text{ km/s/Mpc}$
- Better constraints on cosmological parameters: Ω_M , Ω_{DE} , ω

Standard Siren Cosmography

- Use GW as an independent measure of the luminosity distance to source
- Get redshift from one of these methods:
 - Method 1: Joint GW-EM observations (currently ongoing!)

(Satyaprakash, Schutz, and Van den Broeck, 2010)

Method 2: host galaxy statistical averaging methods

(Chen and Holz, 2016)

Method 3: frequency of tidal deformation

(Messenger et al., 2013)

• How well can we determine the frequency of tidal deformation in GW using 3G detectors?

$$h(f) \propto \frac{1}{D} f^{-7/6}$$

$$\Phi \propto 2\pi f t_c + (M_c f)^{-5/3}$$

Conditions for Tidal Deformation

 $0.00 \le \chi_{NS} \le 0.05$, $1 M_{SUN} \le M_{NS} \le 2 M_{SUN}$

 $\chi = J / (GM / c^2)^2$

 $0.00 \le \chi_{BH} \le 0.99, 5 M_{SUN} \le M_{BH} \le 15 M_{SUN}$ $3 \le q = M_{BH} / M_{NS} \le 5$

Foucart, 2012

Image Credit: T. Hinderer, F. Foucart

Tidal Deformation: breaking the massredshift degeneracy

- Masses are redshifted: m_z = m(1+z)
- TD frequency redshifted: f_{TD, z} = f_{TD} / (1+z)
- Use EOS to relate TD frequency to mass

Waveform Visualization: No Matter Effects

Waveform Visualization: APR Moderate Equation-of-State

Waveform Visualization: 2H Extreme Equation-of-State

Tidal Deformation Signatures: Ratios Between Waveforms for APR

Tidal Deformation Signatures: Ratios Between Waveforms for 2H

Modeling the Next Generation

Einstein Telescope: 10 km arms Three interferometers Located in Europe Cosmic Explorer: 40 km arms Located in the United States

- Recolor the aLIGO datastream with ET and CE noisecurves
- Inject signals into datastreams to retrieve signatures

Signal Injection and Retrieval

Detecting deformability signatures with ET for APR

Signal-to-Noise Ratio Scaling with Redshift

Deformation signatures as a function of redshift for APR EOS

Calibration Uncertainty Budget for L1

Statistical Calibration Uncertainty at Deformation Signatures

Systematic biases

- Distance / inclination angle degeneracy will affect distance estimates to source
- Clearly, EOS matters, but we should know this by the 3G era!
- Waveform uncertainty: might be *greater* than calibration uncertainty
- We assume calibration uncertainty will be lower for ET than aLIGO

Future Work: Cosmography with 3G detectors

- Repeat signal injection for different cases:
 - BNS mergers
 - More realistic EOS models
 - CE recolored datastream
- Calculate luminosity distance to source using parameter estimation methods
- Address systematic biases*
- Mock calculation of H₀
- Fisher analysis to determine uncertainties on H₀
- Translate these to science requirements for 3G detectors

Thank You

- To Alex, for being such a fantastic mentor...
- To Alan, Craig, TJ and all the members and SURFs of LIGO Lab at Caltech for all your help...
- To Jocelyn and the Fullerton GWPAC group for collaborating with us...
- And to NSF and LIGO Scientific Collaboration for making the LIGO Caltech SURF program possible!

Observability of Tidal Signatures with APR EOS

- Calibration uncertainty:
 - Magnitude: < 5% uncertainty at deformation frequency for sources with z < 2
 - Phase: < 2 deg. uncertainty at deformation frequency for sources with z < 2
- Injection:
 - NSBH waveforms clearly visible above ET noisecurve for a nearby source
 - NSBH waveforms with matter barely distinguishable from those without matter in magnitude (noise floor at f_{TD})
- SNR as a function of z:
 - ET can see NSBH sources out to z ~ 2 with SNR ~ 10

Observability of Tidal Signatures with 2H EOS

- Calibration uncertainty:
 - Magnitude: < 3.5 % uncertainty at deformation frequency for sources with z < 2
 - Phase: < 2 deg. uncertainty at deformation frequency for sources with z < 2
- Injection:
 - NSBH waveforms clearly visible above ET noisecurve for a nearby source
 - NSBH waveforms with matter barely distinguishable from those without matter in magnitude (noise floor)
- SNR as a function of z:
 - ET can see NSBH sources out to z ~ 2 with SNR ~ 10

Waveform Visualization: No Matter

Effects

Waveform Visualization: APR Equation-of-State

Waveform Visualization: Extreme 2H Equation-of-State

Tidal Deformability Signatures: Ratios Between Waveforms for APR

NSBH Tidal APR [1.8M_{sun},5.4M_{sun}] with Lackey

Tidal Deformability Signatures: Ratios Between Waveforms for 2H

Whitening aLIGO datastream

Recoloring datastream for ET-D and CE

30

Deformation signatures as a function of redshift

Frequency of phase deviation for NSBH 2H EOS

Calibration Uncertainty at Deformation Signatures

