# Testing GR with GW polarizations

using LIGO and Virgo

#### Maximiliano Isi

LIGO-G1701301

July 12, 2017 @ Amaldi12



LIGO Laboratory, California Institute of Technology

#### Testing GR with GWs

we have already learned a lot from transients:

dispersion

agreement with NR

self-consistency

#### not about polarizations!

there are currently no model-independent measurements of GW polarizations



#### [tl;dr]

#### it is important to probe GW polarizations

# we can do so with current detectors using long-lived signals

[too long ; didn't read]

#### breathing













Cross

vector y

#### longitudinal

| Theory                                                                          | +     | X    | X    | У     | b      | 1    |
|---------------------------------------------------------------------------------|-------|------|------|-------|--------|------|
| General Relativity                                                              |       |      |      |       |        |      |
| GR in noncompactified 4/6D Minkowski                                            |       |      |      |       |        |      |
| Einstein-Æther                                                                  |       |      |      |       |        |      |
| 5D Kaluza-Klein                                                                 |       |      |      |       |        |      |
| Randall-Sundrum braneworld                                                      |       |      |      |       |        |      |
| Dvali-Gabadadze-Porrati braneworld                                              |       |      |      |       |        |      |
| Brans-Dicke                                                                     |       |      |      |       |        |      |
| f(R) gravity                                                                    |       |      |      |       |        |      |
| Bimetric theory                                                                 |       |      |      |       |        |      |
| Four-Vector Gravity                                                             |       |      |      |       |        |      |
| Nishizawa et al., Phys. Rev. D 79, 082002 (2009) [except G4v & Einstein-Æther]. | allow | /ed/ | depe | nds / | forbic | dden |

#### motivation

GR makes unequivocal prediction that only + & x should propagate

## polarizations are go/no-go test, so let's check!





LIGO-G1701301

Max Isi - Amaldi 2017



#### antenna pattern for cross polarization

### persistent signals

antenna patterns leave imprint in persistent signals characteristic of each polarization

> continuous-waves stochastic background

#### new bayesian analyses

detect long GWs of *any* polarization (from known pulsars, or a stochastic background)

distinguish between GR and non-GR

limit amplitude of scalar/vector modes

parameter estimation

model

selection

Isi et al. (2017) [arXiv:1703.07530] Callister et al. (2017) [arXiv:1704.08373]

#### continuous waves



one of ~200 known pulsars potentially in LIGO's band

larxiv: 703.075301

#### continuous waves

#### coherent, monochromatic, well-localized

simple form, in general relativity:

 $h(t) = h_0 \frac{1}{2} \left( 1 + \cos^2 \iota \right) F_+(t) \cos \phi(t) + h_0 \cos \iota F_\times(t) \sin \phi(t)$  $\phi(t) \approx 2\pi \times (2f_{\rm rot})$ 

+ doppler and other timing corrections

in a generic metric theory of gravity:

$$h(t) = \sum_{p} F_{p}(t) a_{p} \cos(\phi(t) + \phi_{p})$$

$$p \in \{+, \times, x, y, s\}$$
phase offset

 $h_0$ , overall strength;  $\iota$ , inclination; F(t), antenna pattern;  $f_{\rm rot}$ , rotational frequency

CW



Max Isi - Amaldi 2017



larxiv:703.015301



larxiv:7703.075301



18171V-7703.075301

### any signal vs noise



lartiv. 703.015301

#### non-gr vs gr



lartiv.7703.015301

### scalar upper limits



CW

### vector upper limits



Max Isi - Amaldi 2017

LIGO-G1701301

CW

### stochastic background

incoherent superposition of myriad unresolvable sources

see Andrew Mata's overview talk on Friday!



SNR (top) and 90%-confidence upper-limits (bottom) from radiometer stochastic background search

[Abbott et al., PRL 118, 121102 (2017)]

lartiv. TOA. DE3731

### stochastic background

SB HU. TOR OB3 3

#### incoherent, broadband, all-sky

measure correlated strain power in two detectors overlap-reduction function  $\left< \tilde{h}_1^*(f) \tilde{h}_2^*(f') \right> = \frac{3H_0^2}{20\pi^2} \delta(f - f') |f|^{-3} \Omega(f) \gamma(f)$ with the *canonical GW energy density* usually parametrized by  $\Omega(f) = \Omega_0 \left( f/f_0 \right)^{\alpha}$ spectral index "slope" in a generic metric theory of gravity:  $\left< \tilde{h}_1^*(f) \tilde{h}_2^*(f') \right> = \frac{3H_0^2}{20\pi^2} \delta(f - f') |f|^{-3} \sum_p \Omega_0^p \left(\frac{f}{f_0}\right)^{\alpha_p}$ polarization amplitude  $p \in \{+, \times, x, y, s\}$ 



SB

||GO-G1701301

overlap reduction functions encode effect of time-of-flight and differences between polarizations





lartiv. TOA.083733



lartiv.7702.083731



lartiv.7708.083737

#### non-gr vs gr



lartiv: TOA.0E3731

#### non-gr vs gr



lartiv. TOA.083731



gray histograms are LIGO-only results, dashed lines mark priors

projected 95%-credible amplitude upper limits

 $\log \Omega_0^{\rm T} < -10.1$   $\log \Omega_0^{\rm V} < -9.9$   $\log \Omega_0^{\rm S} < -10.0$ 



gray histograms are LIGO-only results, dashed lines mark priors

#### Virgo does not increase sensitivity but helps break degeneracy between scalar and vector

### conclusion

we are now able to **detect persistent signals of any polarization** content in a model-independent way

we can directly measure polarization content and quantify agreement with GR

this will allow us to explore a new side of gravity!

[arXiv:1703.07530] | [arXiv:1704.08373]

#### thank you!