

Gravitational Wave detectors: Accomplishments and Plans for the Future

Nordita 21 June 2017

David Shoemaker, ed. For the LSC and Virgo, and The LISA Consortium

LIGO-G1701145-v1

- What are the ground-based Gravitational-wave detectors?
- What limits their sensitivity?
- What have we accomplished with them to date?
- What improvements can we expect in the next year, several years, decades?
- …and space?

LIGO

A spectrum of GW Sources and Sensors

LIGO Laboratory

- Caltech, MIT -

built observatories in '90s Built, then observed with initial detectors 2005-2011; Advanced LIGO Project 2008-2015

What is LIGO's measurement technique?

Enhanced Michelson interferometers

LIGO

- » LIGO, Virgo, and GEO600 use variations
- Passing GWs modulate the distance between the end test mass and the beam splitter
- The interferometer acts as a transducer, turning GWs into photocurrent proportional to the strain amplitude
- Arms are short compared to our GW wavelengths, so longer arms make bigger signals
 → multi-km installations
- Arm length limited by taxpayer noise....

Measuring $\Delta L = 4 \times 10^{-18} \text{ m}$ 4-km-long LIGO Readout Beam splitte Mirror Light **Shot noise** – ability to resolve a detector Laser fringe shift due to a GW (counting statistics) Zum gegenwärtigen Stand des P_{in}=25W, T_{SRM}=100% P_{in}=25W, T_{SRM}=50% Strahlungsproblems, 10⁻²¹ P_{in}=25W, T_{SRM}=20% A. Einstein, 1909 ___Nominal aLIGO (125W, T_{SRM} = 20%) Fringe Resolution at high frequencies improves as as S6 (laser power)^{1/2} 10⁻²² Strain [1//Hz] Point of diminishing returns when buffeting of test mass by photons increases low-frequency noise -10⁻²³ use heavy test masses! 'Standard Quantum Limit' Advanced LIGO will reach this 10⁻²⁴ limit with its 200W laser, 10^{2} 10^{3} 10^{1}

LIGO-G1701145-v1

40 kg test masses

Frequency [Hz]

Measuring $\Delta L = 4 \times 10^{-18} \text{ m}$ Internal motion

Thermal noise – kT of energy per mechanical mode

LIGO

- Über die von der molekularkinetischen Theorie der Wärmegeforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, A. Einstein, 1905
- Motion of components due to thermal energy masks GW
- Low mechanical loss materials gather this motion into a narrow peak at resonant frequencies
- Realized in aLIGO with an all fused-silica test mass suspension – Q of order 10^9
- Test mass internal modes, Mirror coatings engineered for low mechanical loss

P_{in}=25W, T_{SRM}=100%

Measuring $\Delta L = 4 \times 10^{-18}$ m Forces on test mass

- Seismic noise must prevent masking of GWs, enable practical control systems
- (did Einstein work on seismic motion...?)

LIGO

- Motion from waves on coasts...and people and their machines
- GW band: 10 Hz and above direct effect of masking
- Control Band: below 10 Hz forces needed to hold optics on resonance and aligned
- aLIGO uses active servocontrolled platforms, multiple pendulums
- Ultimate limit on the ground: Newtownian background – wandering net gravity vector; a limit in the 10-20 Hz band

And technical noise sources....

Current Sensitivity, Observing Schedule

- » O1 started 12 September 2015, ended 19 January 2016
- » O2 started 30 November 2016, will end ~ 31 August 2017

Two days after the start of observing in O1: Our first detection

- GW150914: the merger of two BHs
- Masses $m_1 = 36^{+5}_{-4} M_{\odot}$ $m_2 = 29^{+4}_{-4} M_{\odot}$
- Final black hole $M_f = 62^{+4}_{-4} M_{\odot}$ $\chi_f = 0.67^{+0.05}_{-0.07}$
- Luminosity distance $D_L = 410^{+160}_{-180} \text{Mpc}$

- We *almost* see a ringdown of the remnant SNR ~ 8
- Waveform post-merger is consistent with pre-merger
- But cannot isolate it and measure the frequency and Q with precision
- (we'll come back to this)

LIGO

The second detection: "Boxing Day" GW151226

Primary black hole mass	$14.2^{+8.3}_{-3.7}{M}_{\odot}$
Secondary black hole mass	$7.5^{+2.3}_{-2.3}{M}_{\odot}$
Chirp mass	$8.9^{+0.3}_{-0.3} {M}_{\odot}$
Total black hole mass	$21.8^{+5.9}_{-1.7} M_{\odot}$
Final black hole mass	$20.8^{+6.1}_{-1.7} {M}_{\odot}$
Radiated gravitational-wave energy	$1.0^{+0.1}_{-0.2} {M}_{\odot} c^2$
Peak luminosity	$3.3^{+0.8}_{-1.6} \times 10^{56} \text{ erg/s}$
Final black hole spin	$0.74\substack{+0.06\\-0.06}$
Luminosity distance	$440^{+180}_{-190} { m Mpc}$
Source redshift z	$0.09\substack{+0.03\\-0.04}$ -

0.6

Our third discovery: GW170104

Primary black hole mass m_1 Secondary black hole mass m_2 Total mass MFinal black hole mass $M_{\rm f}$ Luminosity distance $D_{\rm L}$ Source redshift z $\begin{array}{l} 31.2^{+8.4}_{-6.0}\,M_\odot\\ 19.4^{+5.3}_{-5.9}\,M_\odot\\ 50.7^{+5.9}_{-5.0}\,M_\odot\\ 48.7^{+5.7}_{-4.6}\,M_\odot\\ 880^{+450}_{-390}\,\,\mathrm{Mpc}\\ 0.18^{+0.08}_{-0.07}\end{array}$

The 3.5 signals all together

Black Holes of Known Mass

LSC/Sonoma State University/Aurore Simonnet

Localization with two detectors

• An Annulus, with some further refinement from the antenna pattern:

LIGO-G1701145- LSC/Leo Singer (Milky Way image: Axel Mellinger)

Adding a 3rd detector helps

Virgo arriving soon!

LIGO-G1701145- LSC/Leo Singer (Milky Way image: Axel Mellinger)

The advanced GW detector network

GO

5 detectors far improved source localization

EM followup

Try to capture and identify an EM counterpart to a GW event

So far 80+ groups have signed MOUs with LIGO+Virgo

• No EM counterparts have been identified yet...black holes are quiet.

» Hope to have a detection soon with a Neutron Star

Swift: NASA E/PO, Sonoma State U., Aurore Simonnet

LIGO Concept Roadmap

(Mike's talk, adapted from G1401081)

aLIGO operating at full power and fully commissioned (~3x better than now)

LIGO

aLIGO with the addition of frequency-dependent squeezing and lowered optical coating thermal noise

QNM SNR ~40 (for an event like GW150914)

ZUCKER

LIGO

LIGO

A+

- An incremental upgrade to aLIGO
- leverages existing technology and infrastructure, with
 - » minimal new investment,
 - » moderate risk, and
 - » modest interruption in observing
- Target: factor of 1.7* increase in range over aLIGO

About a factor of 5 greater event rate

- Stepping stone to future 3G detector technologies
- Link to future GW astrophysics and cosmology
- Could be observing within < 6.5 years (mid-2022)
 - » (with FY'19 or earlier funding)
- "Scientific breakeven" within 1/2 year of operation
- Incremental cost: a small fraction of aLIGO
 - » Formulating proposal now

Further Future Improvements: The 3rd generation

- European Concept: Einstein Telescope
- Significant design study undertaken for both Facility and Instruments
- Underground construction proposed to reduce Newtonian Background
 - » (and be compatible with densely-populated Europe)
- Triangle LISA-like with 10km arms
- Multiple instruments in a 'Xylophone' configuration
 - Allows technical challenges for low- and high-frequency to be separated
- Designed to accommodate a range of detector topologies and mechanical realizations
 - » Including squeezing and cryogenics

US Concept: Make Advanced LIGO 10x longer, 10x more sensitive

Signal grows with length – *not* most noise sources

- Thermal noise, radiation pressure, seismic, Newtonian unchanged
- Coating thermal noise improves faster than linearly with length
- 40km surface Observatory 'toy' baseline
 - can still find sites, earthmoving feasible; costs another limit...
- Concept offers sensitivity without new measurement challenges; could start at room temperature, modest laser power, etc.

	Adv. LIGO	40 km LIGO
Arm length	4 km	40 km
Beam radius	6.2 cm	11.6 cm
Measured squeezing	none	5 dB
Filter cavity length	none	1 km
Suspension length	0.6 m	1 m
Signal recycling mirror trans.	20%	10%
Arm cavity circulating power	775 kW	
Arm cavity finesse	446	
Total light storage time	200 ms	2 s

28

Einstein Telescope, Cosmic Explorer LIGO 'Green field' multi-generation Observatories ~G\$/G€

3rd Generation

- When could this new wave of ground instruments come into play?
- Appears 15 years from *t*=0 is a feasible baseline
 - » Initial LIGO: 1989 proposal, and at design sensitivity 2005
 - » Advanced LIGO: 1999 White Paper, GW150914 in 2015
- Modulo funding, could envision...
 - » Einstein Telescope in the early 2030's
 - » Cosmic Explorer in the mid-2030s
- Should hope and strive and plan to have great instruments ready to 'catch' the end phase of binaries seen in LISA (ref. Sesana)
- Crucial for all these endeavors: to grow the scientific community planning on exploiting these instruments far beyond the GR/GW enclave
 - » Costs are like TMT needs a comparable audience

LIGO

A spectrum of GW Sources and Sensors

LIGO LISA

- Notion of a space-based interferometric detector dates from 1974
 - » Rai Weiss and Peter Bender
- Basically a timing measurement between test masses in space

- Take advantage of vacuum in space: make very long arms
 - » $h = \Delta L/L$; L can be ~10⁹ m, making $\Delta L \sim 10^{-12}$ m (not LIGO's 10⁻¹⁹)
 - Also moves best sensitivity to milliHz region – explores much more massive objects
- Triangular configuration
- Sums and differences around the triangle
 - » Allows both polarizations of the gravitational waves to be measured
 - Provides signals to remove laser frequency noise
- Earth-trailing orbit provides scan of the sky, provides sky localization

LISA Pathfinder test mission, now underway: interferometry between two LISA test masses

LISA Pathfinder

- LISA Pathfinder worked very well far better than its requirements, basically meeting the ful LISA requirements
- Demonstrated all technologies needed for LISA that can only be tested in space
- Development for Telescope, etc. remain but are low risk

- Blue: Simulated signal for inspiral of two 5x10⁵ Black Holes inspiraling at z=5
- Red: LISA Pathfinder interferometer performance

LISA Sensitivity, with current Pathfinder Performance

LIGO

LISA Status

- ESA-led mission; NASA minority partner
 - » Both Agencies enthusiastic
- ESA-NASA discussions underway on specific contributions
- EU-US community joint collaboration
 - » Both Communities enthusiastic, too!
 - » In US, the 'L3 Study Team' the Community 'motor'
- EU-US team proposed to ESA 16 January
- Approved as an ESA mission yesterday!
- Phase A imminent; mission adoption planned for 2024 (maybe 2022?)
- Launch date nominally 2034; may bring in to ~2030
- Next major challenge for the US NASA participation in LISA: 2020 Decadal

The End – and **The Beginning**

Wonderful GW science opportunities within the reach of technology

LIGO-G1701145-v1

38