

Machine Learning in Characterization and Commissioning @ GW Detectors

NIKHIL MUKUND MENON

IUCAA PUNE

GOLDEN AGE OF MACHINE LEARNING

Monitoring Lock-losses at Sites

LOCKLOSS MONITOR GOAL: MAXIMIZE IFO UPTIME

N. Mukund, A. Pele, J. Betzwieser, A. Mullavey, M. Kasprzack, S. Kandhasamy, S. Aston, J. Romie, B.O. Reilly, S. Mitra

DENSITY BASED SPATIAL CLUSTERING APPLICATIONS WITH NOISE

Best Guess: Results

Identify the channel that lead to LOCKLOSS

L1:ASC-ADS_PIT4_DOF_OUTPUT L1:ASC-ADS_YAW4_DOF_OUTPUT 2000 1000 -1000 -2000 -80 -60 -40 -60 -40 -20 0 -100 L1:ASC-AS A RF36 Q PIT OUT DQ 1dtASC-ADS_PIT3_DOF_OUTPUT 1 0.5 -0.5 -1 -60 -40 -20 0 -100 -80 -60 -40 L1:PSL-ISS AOM DRIVER MON OUT DQ L1:SUS-ETMY L3 LVESDAMON UL OUT DQ 3000 2000 1000 -60 -40 -20 0 -100 -80 -60 -40 L1:SUS-ETMY_L3_LVESDAMON_LR_OUT_DQ L1:ASC-AS A DC PIT OUT DQ -60 -40 -20 -100 0 -80 -60 -40 L1:ASC-AS A DC YAW OUT DQ L1:ASC-REFL A DC YAW OUT DQ

0.1

0.05

-0.05

-0.1

-100

-80

-60

-40

-20

-20

-20

-20

-20

0

0

0

0

0

-60

-40

-80

-100

-80

-60

-40

-20

0

LOCKLOSS MONITOR RESULTS LOW NOISE to LOCKLOSS at GPS 1167654616

5000

-5000

5000

-5000

0.48

0.47

0.4

0 45

3000

2000

1000

-100

-100

-100

-100

-80

-80

-80

-80

0

6

Best Guess: Results

Identify the channel that lead to LOCKLOSS

LOCKLOSS MONITOR RESULTS

0

L1:LSC-POP_A_LF_OUT_DQ

-40

-40

-60

-60

L1:ISI-ITMY_ST1_ISO_Y_OUTPUT

L1:ISI-ETMY ST1 ISO Y OUTPUT

-20

-20

0

0

E attackate !!!!

890

1000

-1000

1000

0

-100

-100

-80

-80

Best Guess: Results

Identify the channel that lead to LOCKLOSS

8

ML Based Recommendation System

ΜοτινατιοΝ

Commissioning Perspective

- Issues within a detector are often seen to reappear
- LLO-LHO-Virgo-GEO : Can benefit from each others wisdom
- Current GW search engines are not smart enough
- Fast & accurate knowledge discovery saves time & resource

Detector Characterization Perspective

- Better understand the status of the instrument
- Identify the right person to contact
- Understand trends within or among the detectors
- Bridge the gap btw on-site work & off-site data analysis

heyligo.gw.iucaa.in

"ML based Contextual Learning"

Answers queries about

- * DAC glitches
- * Bounce and roll mode damping
- * Operator reports on earthquakes
- * PSL ISS second loop instability
- * Jitter Coupling
- * Scattering noise
- * GRB Alerts

.

N Mukund et al, 2017

Key Idea : Uses a shallow neural network to perform semantic learning by converting LIGO logbook data to word vectors

HEY LIGO ! WEB INTERFACE

<u>heyligo.gw.iucaa.in</u>

Most discussed issues for the day

https://alog.ligo-wa.caltech.edu/aLOG/iframeSrc.php?authExpired=&content=1&step=&callRep=18219&startPage=&preview=&printCall=&callUser=&addCommentTo=&callHelp=&callFileType=#

TRANSIENTS SEEN AT THE SITE

<u>heyligo.gw.iucaa.in</u>

H1:LSC-DARM_IN1_DQ at 1152078617.000 with Q of 45.3

Related to DAC, timing systems, electronic pickup, control loops, optical levers, RF coupling, thunderstorms, overflows.....

25

20

15

10

1.5

13

- ISC : Interferometric Sensing & Control
- AOS : Auxiliary Optics Support
- CDS : Control & Data System
- SEI : Seismic External Isolation
- SUS : Suspension
- TCS : Thermal Compensating System
- PSL : Pre-Stabilized Laser
- PEM : Physical Environment Monitoring
- CAL : Calibration

Glitch distribution across different subsystems

SAME ISSUE: MULTIPLE DETECTORS

heyligo.gw.iucaa.in

Rate of occurrence of Scatter

Rate of occurrence of Glitch

Rate of occurrence of bounce and roll

Classifying the non-astrophysical background

GLITCH STUDIES : MOTIVATION

- Many of them have distinct time-frequency morphology
- Some of them share similarity with GW signals
- Leads to false triggers in various search pipelines
- Matched filtering and Burst pipelines mostly affected
- Often such triggers leave no signature in auxiliary channels
- Morphology based veto needs to be implemented
- Commissioning activities often hampered

HIERARCHICAL CLUSTERING OF TRANSIENTS

N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and N. S. Philip Phys. Rev. D 95, 104059

Morphology progressively changes

BOOSTING THE DIFFERENCES USING NEURAL NETWORKS

N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and N. S. Philip Phys. Rev. D 95, 104059

System Identification via Transfer Function Fitting

MODELLING SYSTEM DYNAMICS

- Often system dynamics are inaccessible to direct modelling
- Possible to built empirical models by fitting the measured frequency response data
- Use these surrogate models to predict behaviour
- Measurements are often noisy
- Fitting by hand takes few hours, not scalable
- Multi-parameter optimization/regression subject to stability constraints
- Some Applications : Seismic feedforward Length to angle decoupling Time domain Newtonian noise filters

MODELLING SYSTEM DYNAMICS

https://github.com/Nikhil-Mukund/TFestimate

ML will be used to determine the optimal algorithm and optimal input parameters. This will require collection of user feedback and more input data.

21

TFESTIMATE : FITS OBTAINED

https://github.com/Nikhil-Mukund/TFestimate

22

Frequency (Hz)

Regression / Multiparameter Optimization

PREDICTING EARTHQUAKE IMPACT AT SITES

M. Coughlin, P. Earle, J. Harms, S. Biscans, C. Buchanan, E. Coughlin, F. Donovan, J. Fee, H. Gabbard, M. Guy, N. Mukund, and M. Perry

Classical and Quantum Gravity, Volume 34, Number 4

Model that predicts ground motion from earthquakes. It is currently used to issue early warning at GW Observatories.

	Time: Tue Apr 04 22:08:38 UTC 2017 Location: 69km SSE of Adak, Alaska; LAT: 51.0, LON: -176.4 Magnitude: 5.7							
<u>USGS event link</u>								
	ifo P-phase Arrival Time	S-phase Arrival Time	R-wave Arrival Time	R-Wave Velocity (micro m/s)	EQ Distance (km)	GPS P-phase Arrival Time	GPS S-phase Arrival Time	GPS R-wave Arrival Time
	H1 15:15:47 PST	15:15:48 PST	15:28:07 PST	4.81367	4091.405	1175379365.1	1175379366.0	1175380105.0
	L1 17:19:14 CST	17:19:15 CST	17:42:40 CST	3.6175	7148.653	1175379572.8	1175379573.8	1175380978.5
	G1 00:20:31 CET	00:20:32 CET	00:49:19 CET	1.74679	8543.346	1175379649.4	1175379650.4	1175381377.0
	V1 00:21:16 CET	00:21:17 CET	00:53:50 CET	2.39336	9495.016	1175379694.9	1175379695.9	1175381648.9

PREDICTING EQ LOCKLOSS AT SITES

Will this earthquake cause a lockloss ?

Earthquake Parameters

https://dcc.ligo.org/LIGO-G1602420

PREDICTING EARTHQUAKE IMPACT AT SITES

Model Improvements:

CONCLUSION

- ML : Growing field, lot of opportunities
- Not a single technique but an agglomeration

Clustering, Classification, Regression, Dimensionality Reduction, Contextual Learning, Reinforcement learning, Deep Learning...

- Extensive code development happening worldwide
- Well-suited for big data problems
- •Will aid automated and adaptive control

