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Notes on “confirming signal model” with a coherent observation for given semi-coherent candidate,
and comparison to rough analytic estimate used in the follow-up paper

I. INTRODUCTION

Consider a perfectly-matched semi-coherent search on a CW signal with parameters λs, using N segments of data

of length ∆T . Assume this yields a maximum-likelihood candidate with summed statistic F̂ , defined as

F̂(λs) ≡
N∑

k=1

Fk(λs) = N F(λs) , (1)

where Fk is the F-statistic in segment k, and F is the average F-statistic over the segments.

The semi-coherent statistic 2F̂ follows a χ2-distribution with 4N degrees of freedom and non-centrality parameter

ρ̂2, which we write as

P
(

2F̂
∣∣∣N, ρ̂2

)
= χ2

4N (2F̂ ; ρ̂2) . (2)

Next, assume we perform a fully-coherent F̃-statistic search on λs using an amount of data Tcoh. The coherent

statistic 2F̃ follows a χ2-distribution with 4 degrees of freedom and non-centrality parameter ρ̃2, which we write as

P
(

2F̃
∣∣∣ ρ̃2
)

= χ2
4(2F̃ ; ρ̃2) . (3)

For stationary noise, the squared-SNR ρ2 for a signal scales linearly with the total amount of data used in the

observation. If we know ρ̂2, we can therefore deduce the non-centrality parameter of the coherent F̃-statistic as

ρ̃2 = κ ρ̂2 , (4)

where we defined

κ ≡ Tcoh
N ∆T

, (5)

which is simply the fraction of the semi-coherent amount of data used for the coherent search.

Question: If we only know 2F̂ , but not ρ̂2, and we measure the perfectly-matched coherent statistic 2F̃(λs) using

a fraction κ of the semi-coherent data, what is the probability distribution for 2F̃? Or in other words, what is

P
(

2F̃
∣∣∣ 2F̂ , N, κ

)
?

II. THE ’NAIVE’ ESTIMATE

The ’naive’ estimate for the range of expected coherent 2F̃ values for given 2F̂ used in [1] and in the present paper

[Eqs.(26),(30)] corresponds to assuming that 2F̂ fully determines ρ̂2, using the guess:

ρ̂2o ≡ 2F̂ − 4N , (6)

which therefore also specifies the coherent non-centrality ρ̃2 as

ρ̃2o = κ ρ̂2o . (7)
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Furthermore, replacing the χ2
4-distribution of Eq. (3) by a Gaussian distribution (which is a good approximation for

ρ̃2 � 1), a “confidence band” of ±nu ’standard deviations’ is given around the mean of the distribution, i.e.

E
[
2F̃
]
≈ 4 + ρ̃2o ≡ 2F̃o (8)

var
[
2F̃
]
≈ 2(4 + 2ρ̃2o) ≡ σ̃2

o , (9)

yielding the criterion

∣∣∣2F̃ − 2F̃o
∣∣∣ ≤ nu σ̃o , (10)

for “signal-model confirmation” with nu “sigma”.

The problem with this simple criterion is that the “standard deviation” σ̃o refers to the case of known ρ̃2, while

the uncertainty on the actual non-centrality parameter for given 2F̂ will tend to widen the probability distribution

for 2F̃ . Therefore it is unclear what numerical confidence corresponds to a given number nu of “sigmas” σ̃o.

III. EXACT DERIVATION OF P
(

2F̃
∣∣∣ 2F̂ , N, κ)

A. Non-centrality ρ̂2 for given semi-coherent 2F̂

For given 2F̂ , we can obtain the probability distribution for the non-centrality ρ̂2 as

P
(
ρ̂2
∣∣∣ 2F̂ , N

)
= P

(
2F̂
∣∣∣N, ρ̂2

) P
(
ρ̂2
∣∣∣N
)

P
(

2F̂
∣∣∣N
) (11)

∝ χ2
4N (2F̂ ; ρ̂2)P

(
ρ̂2
∣∣∣N
)
. (12)

For injections the ρ̂2-prior depends on the distributions used for the signal parameters. For candidates observed in
real data, we can either assume a simple flat prior, or a Jeffreys’ prior, i.e.

P
(
ρ̂2
∣∣∣N
)
∝
{

const.

1/ρ̂2
. (13)

B. Coherent 2F̃ for given semi-coherent 2F̂

For given non-centrality ρ̃2, the probability distribution for 2F̃ is simply given by Eq. (3). If instead we only know

the semi-coherent statistic 2F̂ , then we only know the probability distribution for ρ̃2, from Eq. (11), namely

P
(
ρ̃2
∣∣∣ 2F̂ , N, κ

)
∝ P

(
ρ̂2 = ρ̃2/κ

∣∣∣ 2F̂ , N
)

(14)

∝ χ2
4N

(
2F̂ ; ρ̃2/κ

)
P
(
ρ̃2
∣∣∣N
)
. (15)

We can therefore compute the probability

P
(

2F̃
∣∣∣ 2F̂ , N, κ

)
=

∫ ∞

0

P
(

2F̃ , ρ̃2
∣∣∣ 2F̂ , N, κ

)
dρ̃2 (16)

=

∫ ∞

0

P
(

2F̃
∣∣∣ ρ̃2; 2F̂ , N, κ

)
P
(
ρ̃2
∣∣∣ 2F̂ , N, κ

)
dρ̃2 , (17)

corresponding to marginalization over ρ̃2 for given semi-coherent 2F̂ .

This last expression shows a subtle point: for given coherent non-centrality ρ̃2 and the semi-coherent 2F̂ over N

segments, the probability distribution for 2F̃ is not necessarily given by just the χ2
4-distribution of Eq. (3). Namely,
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if one uses the same data to compute 2F̃ and 2F̂ on, then for given 2F̂ we have more information about 2F̃ than just

ρ̃2, in other words 2F̃ will not be independent of 2F̂ for given ρ̃2. This corresponds to the situation that was referred

to as “data recycling mode” in [2]. On the other hand, if 2F̃ is computed on independent data from that of 2F̂ , then

2F̃ is independent of 2F̂ for given ρ̃2, and so only in this case we strictly have

P
(

2F̃
∣∣∣ ρ̃2; 2F̂ , N, κ

)
= P

(
2F̃
∣∣∣ ρ̃2
)

= χ2
4(2F̃ ; ρ̃2) , (18)

which corresponds to the situation referred to as “fresh data mode” in [2].

Note that assuming no correlation between 2F̃ and 2F̂ for given ρ̃2 is less informative than specifying a correlation.
Therefore this assumption is conservative, in the sense that the posterior pdf will be wider in this case. Given that it
is nontrivial to determine what particular correlation is implied by having used the same data, we will therefore safely
continue with the conservative assumption of the “fresh data mode”, even if in practice the same data was used.

IV. ANALYTIC APPROXIMATION FOR P
(

2F̃
∣∣∣ 2F̂ , N, κ)

One can numerically integrate Eq. (16), but we can also derive a simple analytical approximation. Let us first
rewrite the integral more explicitly as

P
(

2F̃
∣∣∣ 2F̂ , N, κ

)
∝
∫ ∞

0

χ2
4(2F̃ ; ρ2)χ2

4N

(
2F̂ ; ρ2/κ

)
P
(
ρ2
∣∣ I
)
dρ2 . (19)

In the present discussion of coherently following-up semi-coherent candidates, we will practically always be in the

regime of N � 1 and ρ̂2 � 1. This allows us to approximate both χ2-distributions in the integral by Gaussian
distributions, i.e. we will use

χ2
4N (2F ; ρ2) ≈ Gauss

(
2F ; eN (ρ2), σN (ρ2)

)
, (20)

with either N = 1 or N = N , and where we defined the mean and variance of χ2
4N as

eN (ρ2) ≡ E
[
χ2
4N (2F ; ρ2)

]
= 4N + ρ2 , (21)

σ2
N (ρ2) ≡ var

[
χ2
4N (2F ; ρ2)

]
= 2(4N + 2ρ2) . (22)

Therefore we can write the approximate integral now as

P
(

2F̃
∣∣∣ 2F̂ , N, κ

)
∝
∫ ∞

0

P
(
ρ2
∣∣ I
)

σ1(ρ2)σN (ρ2/κ)
exp

[
−1

2

(
(2F̃ − 4− ρ2)2

σ2
1(ρ2)

+
(ρ̃2o − ρ2)2

κ2σ2
N (ρ

2

κ )

)]
dρ2 , (23)

where we rediscover the quantity

ρ̃2o = κ
(

2F̂ − 4N
)

= κN
(
2F − 4

)
, (24)

defined in Eq. (7).
In order to continue, let us assume a flat ρ2-prior, i.e. P

(
ρ2
∣∣ I
)
∝ const. By symmetry, we expect the distribution

Eq. (23) to peak at 2F̃ = 2F̃o = 4 + ρ̃2o, and we therefore approximate the variances σ2(ρ2) by their value at the

peak, i.e. ρ2 = ρ̃2o, so we use

σ2
1(ρ2) ≈ 2(4 + 2ρ̃2o) ≡ σ̃2

o , (25)

σ2
N

(
ρ2/κ

)
≈ 2(4N + ρ̃2o/κ) ≡ σ̂2

o/κ
2 . (26)

Extending the lower integration boundary in Eq. (23) from 0 to −∞, we now find a Gaussian integral, which we can
solve as

P
(

2F̃
∣∣∣ 2F̂ , N, κ

)
≈ 1√

2π σm
exp


−1

2

(
2F̃ − 2F̃o

)2

σ2
m


 = Gauss

(
2F̃ ; 2F̃o, σm

)
, (27)
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where we defined the ’modified’ standard-deviation σm as

σ2
m ≡ σ̃2

o + σ̂2
o = 2

(
4 + 2ρ̃2o

)
+ 2κ2

(
4N + 2

ρ̃2o
κ

)
. (28)

Remarkably, this final distribution agrees rather well with the ’naive’ estimate of Eq. (8)(9), except for a broader width
σm. Compared to the ’naive’ width σ̃o of Eq. (9), σm contains an additional broadening σ̂o added in quadrature,

which accounts for the uncertainty in the estimation of the non-centrality parameter ρ̂2 of the semi-coherent statistic

2F̂ .

V. NUMERICAL EXAMPLES
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FIG. 1: PDFs for given 2F = 5.0, N = 200, κ = 1.00: 2F̃o = 204.0, σ̃o = 28.4, and σm = 56.6.
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FIG. 2: PDFs given 2F = 5.0, N = 600, κ = 0.33: 2F̃o = 204.0, σ̃o = 28.4, and σm = 40.1.
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FIG. 3: PDFs for given 2F = 4.5, N = 200, κ = 1.00: 2F̃o = 104.0, σ̃o = 20.2, and σm = 49.1.
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FIG. 4: PDFs for given 2F = 8.0, N = 200, κ = 1.00: 2F̃o = 804.0, σ̃o = 56.6, and σm = 89.5.
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