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GW Waveforms: GW150914 Template
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GW Parameters: GW150914 Template

3



Inspiral, Merger, Ringdown
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ringdown 



Kepler’s Third Law
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§  Strong-field gravity is characterized by v/c
§  Any deviations from GR will probably have some 

dependence on v/c

Kepler’s 3rd law 
Quasi-circular motion 

P = 1
fo

fGW = 2 fo

v2

c2
⇒
4π 2r( f )2

P2c2
⇒

GMtot

r( f )c2

derived 
classically…but 
still used in GR! 



Waveform Modulation

§  So, we’ll model deviations from GR as being an extra 
multiplicative factor

where

§  λ is complex
§  Re(λ) corresponds to an amplitude modulation
§  Im(λ) corresponds to a phase modulation 6

If λ=0, we’re working 
with Einstein’s GR  
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Examples: Low Mass System
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M1=20Msol 
M2=10Msol 
D=50Mpc 



Examples: Low Mass System
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Examples: High Mass System
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Examples: High Mass System
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Examples: High Mass System
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The Simulated Mergers

13



Bayesian Parameter Estimation
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Posterior distribution 
Prior Likelihood 

 

evidence 

P(θ,d) = P(d,θ )P(θ )
P(d)

θ = λ 
d = data 
the evidence normalizes the pdf 



Bayesian Probabilities (Testing phase)
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The prior: 
Jeffreys (uninformative) prior 

The likelihood: 
normalized SNR maximized over time 
data = modified waveform (1 λ) 
template = modified waveform (sampling λ) 

P(d,θ )

P(λ) = 1
| λ |

p(Re(λ), Im(λ))dλ = dλ
| λ |

= d lnλ



Test #1: Noiseless Waveforms
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Test #1: Noiseless Waveforms
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Test #1: Results

18λ=.6+.4i λ=-1.2-.8i 



Test #1: Results

19λ=.7-2.1i λ=-1+i 



Test #2: Waveforms + WGNoise
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Test #2: Waveforms + WGNoise
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Test #2: Results
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λ=.6+.4i λ=-1.2-.8i 



Test #2: Results
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λ=-1+i λ=.7-2.1i 



Test #3: Waveforms + LIGONoise

§  Noise taken from GW150914 away from the event
§  SNR ~ 1000!!!
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Test #3: Waveforms + LIGO Noise
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For comparison…

for 
GW150914:
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Test #3: Results
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λ=.6+.4i λ=-1.2-.8i 



Test #3: results
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λ=-1+i λ=.7-2.1i 



Bayesian Probabilities
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P(d,θ )

p(Re(λ), Im(λ))dλ = dλ
| λ |

= d lnλ

The prior: 
Jeffreys (uninformative) prior 

The likelihood: 
normalized SNR maximized 
over time 
20 events 



A Few Results

30λ=0 λ=.8i 



Recovering Lambda
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Recovering Lambda
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Recovering Lambda
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Recovering Lambda
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Summary and conclusions

§  Summary
»  Using only 20 events we can pin down a given value of λ very 

precisely

§  Conclusions
»  White gaussian noise is not a good model for LIGO noise
»  There may or may not be a correlation between the real and 

imaginary parts of λ
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Next steps

§  Short term:
»  More reasonable events and SNRs
»  Figuring out the consistent overestimation of λ
»  Figuring out why λ = 0 has lower errors
»  changing both Re(λ) and Im(λ)

§  Long term:
»  How many events to constrain λ by a certain amount
»  Letting all 15 (17) parameters vary
»  Running on the actual data
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