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1 Introduction

The data obained from LIGO has noise that comes from many sources. In order to be
able to better distinguish signals from the noise, it is important to characterize the type of
noise observed. Machine learning algorthms can be used to look for patterns within the data
and to classify the data into different categories.

There are many sensors at the LIGO detectors that measure sources of noise. For
example, there are several stations at each LIGO detector that measure seismic noise in
different frequency channels in each of the X,Y, and Z directions. Within the data, there are
different types of seismic noise such as earthquakes and anthropogenic noise.

In order to sort data, machine learning algorithms can use one of two approaches:
classification or clustering. Classification algorithms search the data and sort the data into
already defined categories. Clustering algorithms look for relationships within the data
to create categories into which the data is sorted. Classification algorithms are part of
supervised learning since the computer determines the structure of the data from data that is
already provided. Clustering algorithms are part of unsupervised learning since the computer
determines the structure of the data without any previous information. Clustering algorithms
can be used to characterize the noise by identifying common characteristics within the noise
and the clustering algorithms can further help with classification. [1]

Neural networks can be used to find relationships between the inputed data by using
hidden layers of connections within the data. Recurrent neural networks are neural networks
that use loops within them so that previous information can be retained. [1]

2 Objectives

The aim of this project is to characterize different sources of noise from LIGO using
machine learning algorithms. First I will test clustering algorithms on seismic data, and then
implement a neural network to sort through the seismic noise data, as well as other noise
data.

3 Clustering Algorithms

3.1 K-means Clustering

The k-means clustering algorithm creates clusters by separating data points into k
number of groups. The value of k is inputted into the algorithm. The clusters are determined
by minimizing the inertia, or the within-cluster sum-of-squares. The inertia is a measure of
how coherent the clusters are. By minimizing the intertia, the algorithm tries to minimize
the difference between the mean value of a cluster and the values of points in the cluster. If
a set of n samples x are inputted, the algorithm divides the samples into k clusters C. Each
cluster is described by its mean uj, or centroid. The interia of a cluster is caluclated by the
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following expression:

n∑
i=0

min
µj∈C

(‖xj − µi‖2)

The inertia is not normalized, but lower values are better and zero is the optimum value.
The inertia assumes that the clusters are convex and isotropic, and would not work well to
cluster irregular or elongated clusters. [2][3]

3.2 DBSCAN Clustering

The DBSCAN clustering algorithm creates clusters out of areas in the data of higher
density. Unlike kmeans, it does not consider clusters to have any particular shapes, and the
algorithm determines the number of clusters based on inputted parameters. Core samples
are points that are in areas of high densities. The algorithm creates clusters around core
samples so that the clusters consist of core samples, and non-core samples that are close to
the core samples. The core samples are determined by two input parameters, the minimum
samples and a specified distance, ε. A point is in the ε-neighborhood if the distance d from a
point p to a point q is within a radius of of ε. High density areas have the minimum sample
of values within the ε-neighborhood. By increasing the number of minimum samples, and
decreasing the distance, ε, a cluster’s density is increased. [2][4]

3.3 Evaluating Clustering Algorithms

3.3.1 G-means Clustering

The G-means clustering algorithm determines the appropriate value of k for the kmeans
clustering algorithm by generating a small number of k-means centers. Each iteration of the
algorithm splits the centers that do not have a gaussian fit into two centers until there is a
gaussian fit. We could use the gaussianity score to evaluate how well kmeans clustering is
working. [5]

3.3.2 Calinsky Harabaz Index

The Calinsky-Harabaz index is a method used to evaluate how well clustering algorithms
work, that does not require input of external data. The Calinsky-Harabaz score is calculated
by finding the ratio of the between-clusters dispersion mean to the within-cluster dispersion
mean. This ratio is calculated as follows:

s(k) =
Tr(Bk)

Tr(Wk)
× N − k

k − 1

Where k is the number of clusters, Bk is the between group dispersion matrix, Wk is the
within group dispersion matrix and N is the number of data points. Wk and Bk are defined
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by:

Wk =
k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T

Bk =
∑
q

nq(cq − c)(cq − c)T

Where Cq is the number of set points in cluster q, cq is the center of cluster q, c is the
center of the clusters, and nq is the number of points in cluster q. [2]

3.3.3 Comparing Clusters to Earthquake Times

Another way to evaluate how well the clustering algorithms work is to add up the cluster
labels that occur five minutes before and after an earthquake Rayleigh wave arrives, to add
up the total amount of cluster labels, and for each individual cluster to divide the number
of cluster labels that appear near the earthquake by the total number of cluster labels. For
each cluster k, the earthquake comparison score, E(k) can be determined by:

E(k) =
Ne

Nt

Where Ne is the number of cluster labels five minutes before and after an earthquake,
and Nt is the total number of cluster labels. If a cluster corresponds to the presence of an
earthquake then it will have a high percentage of its cluster labels present near an earthquake.

4 Current Progress

I have written a script that determines how well clusters that are determined by cluster-
ing algorithms correspond to recorded earthquakes. The script reads in seismic data taken
from three seismometers as well as earthquake data from the observatory. It reads in the
earthquake band channels from the data and then clusters the channels using kmeans and
dbscan. The script counts the cluster labels five mintues before and after the time when
earthquake Rayleigh waves arrive at the site as well as the total number of cluster labels.
For each individual cluster, the earthquake comparison score is calculated. Only earthquakes
with ground displacement greater than 65 percentile are considered. This score is used to
determine how well a cluster corresponds to an earthquake.

I have used this script on seismic data from the Hanford observatory from March of
2017. I have clustered the data from the earthquake channels using kmeans, dbsca. I’ve also
used the Calinsky-Harabaz index to evaluate how well the clustering works. Table 1 shows
the clustering results for kmeans clustering. Figure 1 shows a plot of earthquake channels
clustered into six clusters using kmeans. The vertical lines indicate the times of earthquakes
that the clusters are compared to.
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Number of Clusters
Calinsky-Harabaz
Score

Cluster of Earth-
quake Score

Earthquake Score

2 40192 1 0.5
3 37288 1 0.48
4 43960 2 0.31
5 44225 2 0.34
6 45618 2 0.33
7 46338 2 0.33
8 46349 1 0.44
9 46190 3 0.59
10 45323 6 0.75

Table 1: Results of kmeans clustering

Epsilon
Value

Minimum
Samples

Number of
Clusters

Calinsky-
Harabaz
Score

Cluster of
Earthquake
Score

Earthquake
Score

1 15 1 14 -1 0.01
2 10 15 5 -1 0.01
2 15 5 6 -1 0.01
2 20 1 14 -1 0.01
2 25 1 14 -1 0.01
2 30 1 14 -1 0.01
3 15 6 123 -1 0.01
4 15 8 194 -1 0.01

Table 2: Results of DBSCAN clustering

In order to obtain clusters that better correspond to earthquakes, I added rows to the
data that are shifted by time and inputted the timeshift data into the clustering algorithm.
This change allows the clustering algorithms to compare points across time when clustering
the data. Table 2 shows the clustering results for kmeans clustering of data that has been
shifted by 10 minutes. Table 3 shows the clustering results for kmeans clustering of data that
has been shifted by 30 minutes.Table 4 shows the clustering results for kmeans clustering
of data that has been shifted by 60 minutes. Figure 2 shows a plot of earthquake channels
clustered into six clusters using kmeans. The vertical lines indicate the times of earthquakes
that the clusters are compared to.

It appears that the timeshifted data is better at predicting earthquakes than the data
that is not timeshifted. The average earthquake scores of the orginal data clusted by kmeans
are larger than those of the shifted data clustered by kmeans. The original data has an
earthquake score of 0.45 while the average score for data shifted by 10 minutes is 0.70.
Additionally, data that has been shifted by a shorter amounts of time and then clustered
by kmeans has better earthquake scores. The respective earthqake score averages for data
shifted by 10 minutes, 30 mintues, and 60 minutes are 0.70, 0.53 and 0.42 respectively.This
may be because by including data from shorter amounts of time it can better distinguish
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Number of Clusters
Calinsky-Harabaz
Score

Cluster of Earth-
quake Score

Earthquake Score

2 34964 1 0.46
3 31171 1 0.46
4 26968 2 0.55
5 24662 1 0.55
6 27683 4 0.80
7 24379 5 0.89
8 26093 4 0.89
9 25915 4 0.86
10 24026 1 0.86

Table 3: Results of kmeans clustering of data shifted by 10 minutes

Number of Clusters
Calinsky-Harabaz
Score

Cluster of Earth-
quake Score

Earthquake Score

2 16429 1 0.28
3 14463 2 0.29
4 17880 2 0.50
5 16758 3 0.55
6 15615 2 0.56
7 15731 5 0.53
8 14508 5 0.56
9 16899 2 0.70
10 16828 1 0.88

Table 4: Results of kmeans clustering of data shifted by 30 minutes

Number of Clusters
Calinsky-Harabaz
Score

Cluster of Earth-
quake Score

Earthquake Score

2 7199 1 0.17
3 7376 2 0.17
4 9435 3 0.32
5 10387 4 0.41
6 10674 3 0.44
7 9559 4 0.52
8 10866 7 0.59
9 9071 6 0.52
10 9113 3 0.61

Table 5: Results of kmeans clustering of data shifted by 60 minutes

quick events like earthquakes. Also, the dbscan clustering algorithm does not seem to be
working well, because it places the majority of its points in the noise cluster (indicated as
-1) which results in most of the points near earthquakes being classified as noise. However,
more comparisons of clustered data sets, using kmeans as well as other clustering algorithms,
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are needed before coming to conclusions.

5 Future Progress

I see if I can improve the algorithm that compares earthquake data to the clusters, as
well as see if I can use the G-means gausianity score to evaluate k-means clusters. I will
also continue to test the clustering algorithms using the earthquake comparison score. After
having a metric that is able to compare data from different clustering algorithms, the plan is
to implement a neural network to try to deterime clusters within the data that are located
near earthquakes. The results from the neural network will be compared to the results of
clustering the data as well as comparing it to the clustering the timeshifted data.
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A Script for Evaluating Clustering Algorithms

’’’

This script reads in seismic noise data from March 2017 and earthquake data.

It shifts the data by time for clustering

It creates a list of earthquake times in March when

the peak ground motion is greater than a certain amount.

It clusters earthquake channels using kmeans and dbscan.

It compares the clusters around the earthquake times

to deterime effectiveness of clustering

’’’

from __future__ import division

from sklearn.cluster import KMeans
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Figure 1: Plot of data from earthquake channels clustered using kmeans with k=6 (earth-
quakes indicated)
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Figure 2: Figure 1 zoomed in for detail
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Figure 3: Plot of data from earthquake channels clustered using kmeans with k=6 on
timeshifted data (earthquakes indicated)
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Figure 4: Figure 3 zoomed in for detail
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from sklearn.cluster import DBSCAN

from sklearn.cluster import AffinityPropagation

from sklearn.cluster import MeanShift,estimate_bandwidth

from sklearn.cluster import spectral_clustering

from sklearn.cluster import AgglomerativeClustering

from sklearn.cluster import Birch

from sklearn import metrics

from sklearn.preprocessing import StandardScaler

import numpy as np

from scipy.io import loadmat

import matplotlib

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

from matplotlib.pyplot import cm

import scipy.signal

from astropy.time import Time

import collections

plt.rc(’text’, usetex=True)

plt.rc(’font’, **{’family’: ’serif’, ’serif’: [’Computer Modern’]})

plt.rc(’axes’, labelsize=20.0)

plt.rc(’axes’, axisbelow=True)

plt.rc(’axes.formatter’, limits=[-3,4])

plt.rc(’legend’, fontsize=14.0)

plt.rc(’xtick’, labelsize=16.0)

plt.rc(’ytick’, labelsize=16.0)

plt.rc(’figure’, dpi=100)

#variables

colors = np.array([’r’, ’g’, ’b’, ’y’,’c’,’m’,’darkgreen’,’plum’,’darkblue’,’pink’,’orangered’,’indigo’]) #colors for clusters

cl= 6 #number of clusters for kmeans

cl2 = 3 #number of clusters for agglomerative clustering

cl3 = 7 #number of clusters for birch

eps = 2 #min distance for density for dbscan

min_samples=15 #min samples for dbscan

#read in data

H1dat = loadmat(’Data/’ + ’H1_SeismicBLRMS.mat’)

edat = np.loadtxt(’Data/H1_earthquakes.txt’)

#read in earthquake channels

cols = [6,12,18,24,30,36,42,48]

vdat = np.array(H1dat[’data’][0])

vchans = np.array(H1dat[’chans’][0])

for i in cols:

add = np.array(H1dat[’data’][i])
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vdat = np.vstack((vdat, add))

for i in cols:

vchans = np.append(vchans,H1dat[’chans’][i])

timetuples = vdat.T

vdat2 = vdat

vchans2 = vchans

#shift the dat

t_shift = 30 #how many minutes to shift the data by

for i in cols:

add = np.array(H1dat[’data’][i])

for j in range(1, t_shift+1):

add_shift = add[j:]

add_values = np.zeros((j,1))

add_shift = np.append(add_shift, add_values)

vdat2 = np.vstack((vdat2, add_shift))

chan = ’Time_Shift_’ + str(j) + ’_Min_EQ_Band_’ + str(i)

vchans2 = np.append(vchans2, chan)

print(np.shape(vdat2))

vdat2 = vdat[:,:43200-t_shift]

print(np.shape(vdat2))

timetuples2 = vdat.T

timetuples3 = vdat[0:num].T

#convert time to gps time

times = ’2017-03-01 00:00:00’

t = Time(times,format=’iso’,scale=’utc’)

t_start= int(np.floor(t.gps/60)*60)

dur_in_days= 30

dur_in_minutes = dur_in_days*24*60

dur = dur_in_minutes*60

t_end = t_start+dur

#use peak ground motion to determine which earthquakes are bigger

row, col = np.shape(edat)

gdat = np.array([])

for i in range(row):

point = edat[i][20]

gdat = np.append(gdat,point)

gdat = gdat.T

glq = np.percentile(gdat,65)

#use only earthquakes with signifigant ground motion

row, col = np.shape(edat)

etime = np.array([])

for i in range(row):
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if (edat[i][20] >= glq):

point = edat[i][5]

etime = np.append(etime,point)

#use only earthqaukes that occur in March 2017

col = len(etime)

etime_march = np.array([])

for i in range(col):

if ((etime[i] >= t_start) and (etime[i] <= t_end)):

point = etime[i]

etime_march = np.append(etime_march,point)

#clustering (for loop is to try different input variables for clustering )

min_samples_list = [10,20,25,30]

for min_samples in min_samples_list:

#kmeans = KMeans(n_clusters=cl, random_state=12).fit(timetuples)

db = DBSCAN(eps=eps,min_samples=min_samples).fit(timetuples)

#print number of clusters

print(’ ’)

n_clusters_ = len(set(db.labels_)) - (1 if -1 in db.labels_ else 0)

print(’DBSCAN created ’ +str(n_clusters_) + ’ clusters’)

#add up number of clusters that appear next to each earthquake

#kpoints = np.array([])

xvals = np.arange(t_start,t_end,60)

dbpoints = np.array([])

for t in etime_march: #for each EQ: collect indices within 5 min of EQ

tmin = int(t-5*60)

tmax = int(t+5*60)

for j in range(tmin,tmax):

val = abs(xvals-j)

aval = np.argmin(val)

#kpoints = np.append(kpoints, aval)

dbpoints = np.append(dbpoints, aval)

#kpoints = np.unique(kpoints) #make sure there are no repeating indices

dbpoints = np.unique(dbpoints)

#kclusters = np.array([])

dbclusters = np.array([])

#for i in kpoints: kclusters = np.append(kclusters,kmeans.labels_[int(i)]) #for each index find the corresponding cluster and store them in array

for i in dbpoints: dbclusters = np.append(dbclusters,db.labels_[int(i)])

#kmeans score determined by ratio of points in cluster/points near EQ to points in cluster/all points
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’’’

print(’ ’)

print(’Cl = ’ + str(cl))

print(’Number of points in each cluster that are near an EQ’)

print(collections.Counter(kclusters))

print(’Number of points in each cluster’)

print(collections.Counter(kmeans.labels_))

k_count = collections.Counter(kclusters).most_common()

ktot_count = collections.Counter(kmeans.labels_).most_common()

k_list_cl = [x[0] for x in k_count] #cluster number

k_list = [x[1] for x in k_count] #occurences of cluster

ktot_list_cl = [x[0] for x in ktot_count]

ktot_list = [x[1] for x in ktot_count]

k_clusters = np.array([])

k_compare = np.array([])

k_list2 = np.array([])

ktot_list2 = np.array([])

for i in range(len(k_list_cl)): #arrange so that k_clusters k_list2 and k_compare are in the same order

for j in range(len(ktot_list_cl)):

if k_list_cl[i] == ktot_list_cl[j]:

k_clusters = np.append(k_clusters,k_list_cl[i])

compare = k_list[i]/ktot_list[j]

k_compare = np.append(k_compare, compare)

k_list2 = np.append(k_list2, k_list[i])

ktot_list2 = np.append(ktot_list2, k_list[i])

print(’List with the clusters in order’)

print(k_clusters)

print(’Number of points in clusters near EQ divided by total number of points in clusters’)

print(k_compare)

k_cal_score = metrics.calinski_harabaz_score(timetuples, kmeans.labels_)

print(’For kmeans the calinski harabaz score is ’ + str(k_cal_score))

’’’

#dbscan score determined by percent of points sorted into one cluster near EQ

print(’Number of points in each cluster that are near an EQ’)

print(collections.Counter(dbclusters))

print(’Number of points in each cluster’)

print(collections.Counter(db.labels_))

db_count = collections.Counter(dbclusters).most_common()

dbtot_count = collections.Counter(db.labels_).most_common()

db_list_cl = [x[0] for x in db_count]

db_list = [x[1] for x in db_count]

dbtot_list_cl = [x[0] for x in dbtot_count]

dbtot_list = [x[1] for x in dbtot_count]

db_clusters = np.array([])

db_compare = np.array([])

db_list2 = np.array([])
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dbtot_list2 = np.array([])

for i in range(len(db_list_cl)):

for j in range(len(dbtot_list_cl)):

if db_list_cl[i] == dbtot_list_cl[j]:

db_clusters = np.append(db_clusters,db_list_cl[i])

compare = db_list[i]/dbtot_list[j]

db_compare = np.append(db_compare, compare)

db_list2 = np.append(db_list2, db_list[i])

dbtot_list2 = np.append(dbtot_list2, db_list[i])

print(’List with the clusters in order’)

print(db_clusters)

print(’Number of points in clusters near EQ divided by total number of points in clusters’)

print(db_compare)

d_cal_score = metrics.calinski_harabaz_score(timetuples, db.labels_)

print(’For dbscan the calinski harabaz score is ’ + str(d_cal_score))

#Plot 1: Plot graph of kmeans clustering for EQ

xvals = np.arange(t_start,t_end,60)

fig,axes = plt.subplots(len(vdat), figsize=(40,4*len(vdat)))

for ax, data, chan in zip(axes, vdat, vchans2):

ax.scatter(xvals, data,c=colors[kmeans.labels_],edgecolor=’’,

s=3, label=r’$\mathrm{%s}$’ % chan.replace(’_’,’\_’))

ax.set_yscale(’log’)

ax.set_ylim(np.median(data)*0.1, max(data)*1.1)

ax.set_xlabel(’GPS Time’)

ax.grid(True, which=’both’)

ax.legend()

for e in range(len(etime_march)):

ax.axvline(x=etime_march[e])

fig.tight_layout()

fig.savefig(’Figures/Kmeans_all_’+str(cl)+’.png’)

#Plot 2:plot graph of dbscan clustering for EQ

fig, axes = plt.subplots(len(vdat), figsize=(40,4*len(vdat)))

for ax, data, chan in zip(axes, vdat, vchans2):

ax.scatter(xvals, data, c=colors[db.labels_], edgecolor=’’,

s=3, label=r’$\mathrm{%s}$’ % chan.replace(’_’,’\_’))

ax.set_yscale(’log’)

ax.set_ylim(np.median(data)*0.1, max(data)*1.1)

ax.set_xlabel(’GPS Time’)

ax.grid(True, which=’both’)

ax.legend()

for e in range(len(etime_march)):

ax.axvline(x=etime_march[e])

fig.tight_layout()

fig.savefig(’Figures/dbscan_all.png’)
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