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Introduction

e Data from LIGO contains noise from many sources, that need to be
characterized

e Machine learning algorithms can be used to look for patterns within the data
and to cluster or classify the data into different categories

e \Would help determine if changes in detector sensitivity are related to changes
in environment

e Looked at seismic noise for project

e Other Environmental channels: wind, acoustic



Seismic BLRMS Data
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Machine Learning

e Machine learning is the field of study of programming computers so that they
can learn from inputted data and improve their performance as they are given
more data

e Supervised Learning vs. Unsupervised Learning

e C(Classification vs. Clustering



Evaluating How Well Clustering Works

e Calinsky Harabaz-Score
o Ratio of between-clusters dispersion mean to within-cluster dispersion mean
e Comparison to recorded earthquake times

o Add up cluster labels that occur 10 minutes before/after an earthquake

o Add total number of cluster labels

o For each cluster determine score , E(k), by dividing cluster labels near earthquake, N_, by total
cluster labels, N,

o E(k) = NN,
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Determining Earthquake Times
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Determining Earthquake Times
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Clustering Algorithms

e Kmeans
o Splits data into k number of clusters by minimizing distances between points and average
point in cluster

e DBSCAN

o Splits data into clusters to create clusters out of high density areas

e Agglomerative Clustering
o A type of hierarchical clustering that builds clusters by merging data points into clusters

e Birch

o Makes a tree data structure
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Kmeans
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Kmeans

Number of Clusters Calinsky-Harabaz Cluster of Max Maximum Earthquake
Score Earthquake Score Score
2 401721 1 0.03
3 37282.1 1 0.04
4 43960 1 0.07
5 442247 4 0.08
6 45616.4 3 0.08
7 46338.4 3 0.08
8 46348.9 7 0.11
9 46095.1 1 0.11
10 46746.5 6 0.13
Average 44087 .1 N/A 0.08




DBSCAN

Epsilon Value Minimum Number of Calinsky-Harab | Cluster of Maximum
Samples Clusters az Score Maximum Earthquake

Earthquake Score
Score

1 15 1 14.2 -1 0.0125

2 10 15 5.1 -1 0.0126

2 15 5 6.3 -1 0.0125

2 20 1 14.2 -1 0.0125

2 25 1 14.2 -1 0.0125

2 30 1 14.2 -1 0.0125

3 15 6 123.1 -1 0.0141

4 15 6 1941 -1 0.0159

5 15 8 372.5 -1 0.0176




Include Shifted Data in Clustering
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Shifting Data by Two Indices



Include Shifted Data in Clustering

Timeshift (minutes) | Calinsky-Harabaz Maximum
Average Earthquake Score
Average
0 440871 0.08
10 492511 0.08
30 44081.2 0.09

60 44066.1 0.08



Neural Networks

e Neural networks can be used to find relationships in data by using hidden
layers of connections within the data

I

output
To output

Figures from: http://neuralnetworksanddeeplearning.com/chap1.html



http://neuralnetworksanddeeplearning.com/chap1.html

Neural Networks

We used keras with tensorflow backend

Timeshift the data by 30 min

Read in whether an earthquake occurs at a given time
Use Sequential model to add four layers

Use sigmoid activation

Accuracy: 0.998



Neural Networks
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Neural Networks
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Future Work

e Obtain six months of data to use for training the neural network
e Improve the neural network

e Compare neural network results to results from clustering

e Cluster and classify DARM channel BLRMS



