Laser Mode Spectroscopy for Mirror Metrology

Naomi Wharton Mentors: Koji Arai and Rana Adhikari

LIGO SURF 2017

August 24, 2017

Gravitational Wave Detectors

Optical Loss

- Low optical power loss needed to maintain sensitivity of interferometer.
- Optical loss → reduced effective power of input beam → loss of squeezed light → increased shot noise → lower sensitivity to GW
- Some causes of optical loss:
 - Mirror figure error
 - Surface aberrations, scratches, point defects
 - Absorption
 - Microroughness
 - ETM transmission

Mirror Figure Error

- More focused problem: How can we evaluate optical loss due to mirror figure error?
- Fizeau interferometer →
 mirror surface compared to
 ideal reference piece.
 - → Produce phase map.

 Instead, want in-situ interferometric measurement with actual cavity beam used for GW detection.

Method

- Difficult: In-situ measurement of mirror figure error.
- Easier: Given cavity with some figure error → Measure transmission curve.
- This project: Can we use cavity transmission of transverse modes (TEM) as a sensor for mirror figure error?

Higher-Order Cavity Modes

- Hermite-Gaussian modes: Family of solutions to paraxial Helmholtz equation.
- Resonant modes of FP cavity.

Higher-Order Cavity Modes

Beam aligned to cavity
 → only see Gaussian
 beam, the lowest-order
 solution (TEM₀₀).

 Misaligned beam → higher-order modes appear.

Higher-Order Cavity Modes

 Ideal cavity → resonant frequencies determined by cavity length and radius of curvature.

$$\nu_{\text{FSR}} = \frac{c}{2L} \qquad \nu_{\text{TMS}} = \nu_{\text{FSR}} \left(\frac{m+n}{\pi}\right) \cos^{-1} \sqrt{\left(1 - \frac{L}{R_1}\right) \left(1 - \frac{L}{R_2}\right)}$$

 Real cavity → mirror figure error creates shifts in mode frequencies and amplitudes.

Finesse

- Software package for running simulations of user-defined optical cavities.
- Run Finesse simulation of FP cavity with parameters of one arm of LIGO 40m prototype interferometer.
- By default, all mirrors are perfectly smooth → Make simulation more realistic by introducing a phase map to the ETM.

Zernike Polynomials

 Sequence of polynomials orthogonal on unit disk. Each polynomial corresponds to a type of optical aberration.

- Simulate mirror figure error:
 - Apply random coefficients to Zernike polynomials
 - Coefficients normally distributed, $\sigma = 4$ nm

Zernike Polynomials

 Run many simulations with different Zernike coefficients → learn how much figure error affects cavity transmission.

 Compare HOM transmission peaks from many different phase maps:

- Compare transmission peaks to ideal cavity.
 - ightarrow Changes in u_{FSR} and u_{TMS} give information about cavity parameters.

Example

 TMS should vary linearly with mode order:

$$\nu_{\rm TMS} = \nu_{\rm FSR} \left(\frac{m+n}{\pi} \right) \cos^{-1} \sqrt{\left(1 - \frac{L}{R_1} \right) \left(1 - \frac{L}{R_2} \right)}$$

- → Perform linear fit to find new TMS
- ightarrow Calculate R_2 , ETM radius of curvature
- FSR varies with cavity length:

$$\nu_{\rm FSR} = \frac{c}{2L}$$

- \rightarrow Find FSR from distance between consecutive TEM₀₀ peaks
- ightarrow Calculate effective cavity length L
- $\sigma \approx 4\,\mathrm{nm}$ deviation induces $\approx \pm 5\,\mathrm{kHz}$ shift of the TMS

 $R_2 \approx 56.443 \,\mathrm{m}$ $L \approx 40.002 \,\mathrm{m}$

Summary

- Goal: Determine optical losses in GW detector interferometers due to mirror figure error.
- Method: Use cavity transmission peaks as sensor for figure error.

- → Simulate realistic mirror perturbations with phase maps.
- → Inject higher-order laser modes into simulated cavity.
- → Use shifts in resonant frequencies of HOMs to learn about cavity parameters.

Next Step: Bayesian Inference

- Problem: Identify most probable phase map of a cavity mirror given a certain measurement of its transmission.
- One method: Markov chain Monte Carlo (MCMC)
 - → Relies on Markov chain: process with property that, conditional on its *n*th step, its future values do not depend on its previous values.
 - → Insert many phase maps and their corresponding transmission curves.
 - → Accuracy of approximation for most probable phase map increases as input sample size increases.

Thank you!