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1 Abstract

The LIGO gravitational wave detectors are specialized Michelson interferometers each with
two arms that are four kilometers in length. FEach arm of the interferometers forms an
optical cavity capped by semi-transparent mirrors by which laser light is transmitted and
reflected. Imperfections on the surfaces of these mirrors cause optical power losses in the
cavities that must be minimized for optimal performance. In a cavity with perfectly spherical
mirrors, the modes of a Gaussian beam will resonate at equally spaced frequencies. In
reality, surface perturbations cause the resonance peaks of several higher-order (Hermite-
Gaussian) modes to shift in the cavity transmission spectrum. The aim of this project is to
use cavity scan techniques to measure deviations in the spacing of these higher-order modes.
By comparing these experimental deviations with theoretical mode spacings, we can learn
about the physical properties of the cavity mirrors. Our ultimate goal is to use Bayesian
inference techniques to recreate the surface perturbation map of a mirror from its cavity
transmission spectrum.
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2 Introduction

2.1 Einstein’s Gravitational Waves

Our knowledge of the universe derives almost exclusively from observations of electromag-
netic waves. For centuries, early astronomers used optical telescopes to continually reshape
humanity’s understanding of the size and structure of the world beyond Earth. The twenti-
eth century brought significant technological advances that allowed us to peer at the universe
in a different light, outside of the visible spectrum; observations in the radio, infrared, ultra-
violet, x-ray, and gamma ray portions of the electromagnetic spectrum revealed knowledge
previously hidden by our own eyes.

Gravitational wave astronomy offers a fundamentally different tool by which to learn about
the universe. Instead of looking for electromagnetic waves traveling through space, we are
listening for light-speed vibrations in spacetime itself. Originally predicted as a consequence
of Einstein’s general theory of relativity in 1915, gravitational waves were first observed by
the Laser Interferometer Gravitational-Wave Observatory (LIGO) on September 14, 2015.

2.2 Gravitational Wave Detection

As a gravitational wave propagates through spacetime at the speed of light, it alters the
relative length between objects with mass. These differential changes in length are normally
impossibly small to detect. However, when the source of a gravitational wave is as massive
and compact as the merger of a binary black hole system, the differential length change is
large enough to detect with an extremely sensitive interferometer.

The Advanced LIGO gravitational wave detectors in Hanford, WA, and Livingston, LA,
are specialized Michelson interferometers each with two arms that are four kilometers in
length. Each arm of the interferometers forms a Fabry-Pérot cavity capped by a semi-
transparent Input Test Mass (ITM) and an End Test Mass (ETM). Gravitational waves that
pass through the detectors slightly alter the relative distance between the corresponding test
masses; interferometers are able to convert these differential changes in length into an optical
signal [1].

2.3 Optical Loss

As laser light passes into the Fabry-Pérot cavities, it is continually transmitted and reflected
by the semi-transparent mirrors. The LIGO interferometers use these Fabry-Pérot cavities in
order to increase the interaction time between a passing gravitational wave and the detector
[3]. In order to maintain the sensitivity of the interferometer to gravitational waves, it is
essential that the cavities have a low optical power loss. Several of the factors that contribute
to the power loss in the cavity are:

e figure error of the test masses

e defects - surface aberrations, scratches, point defects, contamination
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Figure 1: Basic 4-km Michelson interferometer. Source: [2]

e absorption by test mass coatings
e microroughness of the test masses

e transmission by the ETM

In order for the LIGO interferometers to function effectively, the round trip cavity loss
must be less than 75 parts per million [3]. Thus, it is of great interest to LIGO science to
understand and be able to categorize the sources of optical loss in the Fabry-Pérot cavities
of gravitational wave detectors.

The main goal of this project is to evaluate optical loss in a gravitational wave interferometer
due to mirror figure error. Currently, a Fizeau interferometer can be used to produce a phase
map of mirror surfaces as they are being polished and coated [3]. However, this can only be
performed outside of the actual detectors. We want to instead be able to perform an in-situ
interferometric measurement of the mirror figure error with the cavity beam actually used
for gravitational wave detection.

3 Objectives

3.1 Project Outline

In this project, we will use cavity scan techniques to measure deviations of the transverse
Hermite-Gaussian modes (see Section 3.3) of an optical cavity from their ideal equal spacing
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(14). By comparing these experimental deviations with theoretical mode spacings, we hope
to learn information about the shape of the cavity mirror, allowing us to characterize the
sources of optical loss in the cavity. Our ultimate goal is thus to be able to create a “mirror
map” of the imperfections of a cavity mirror using measurements of the higher-order modes
that resonate within the cavity.

In the following subsections, we will introduce the relevant concepts and terminology relating
to optical cavities and their properties.

3.2 Fabry-Pérot Cavity Modes [4]

A Fabry-Pérot cavity, or resonator, is a simple setup of two flat, parallel mirrors separated by
a distance L. The electromagnetic modes U(r) of a Fabry-Pérot resonator are the solutions
of the Helmholtz equation,

VU + kU = 0, (1)

given the boundary conditions defined by the two reflective surfaces. If the two mirrors are
positioned perpendicularly along the z-axis, with the first mirror at z = 0 and the second
mirror at z = d, we can write these longitudinal modes as standing waves with complex
amplitude

U(r) = Aysink,z, (2)

where ¢ is an integer, A, is a constant coefficient corresponding the the gth mode, and k, is
the wavenumber given by

qm

b= )
This ensures that the complex amplitude vanishes at both z = 0 and at z = L, as dictated
by our boundary conditions. From Equation (3), we can find that the frequency of the gth

mode is given by
ck c /qm qc
v, =—=—\|—)] = — 4
T on 27‘(‘( L ) 2L’ (4)
where c is the speed of light in the medium. Each resonant frequency v, is thus separated
from adjacent resonant frequencies v,4; by

c

VPSR = 5T (5)

The quantity vpsgr is known as the free spectral range of the cavity.

The equal spacing of these longitudinal modes arises if there is no linear dispersion in either
the cavity mirrors or the cavity medium. This is conveyed in our use of Equation (4), which
implies that the speed of the waves is independent of frequency, v, and wavenumber, k [5].
We make a note here that the free spectral range vpgr is determined by the absolute length
of the optical cavity, as shown by Equation (5). Thus, just as we can predict vpsg given the
length L of an optical cavity, we can use a measurement of vpsgr to learn about the length
of a cavity.
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3.3 Hermite-Gaussian Modes [4]

We consider now a spherical-mirror resonator, which consists of two spherical mirrors of radii
Ry and R,, instead of the planar mirrors of the Fabry-Pérot cavity. Now, the modes of the
resonator are paraxial waves - beams whose wavefronts make small angles with the axis of
propagation. In particular, a Gaussian beam is a paraxial wave with its power concentrated
in a cylinder around the axis of propagation and with its intensity distributed in a Gaussian
function centered in the transverse plane. A Gaussian beam is a mode of a spherical-mirror
resonator if the radii of curvature of the wavefronts of the beam are the same as the radii of
curvature of the spherical mirrors.

A Gaussian beam is the lowest-order solution of a family of solutions to the paraxial Helmholtz
equation. These solutions are know as Hermite-Gaussian modes. These beams are similar
to Gaussian beams in that they have the same wavefronts, but have different intensity dis-
tributions. Instead of the circularly symmetric Gaussian intensity distribution innate to a
Gaussian beam, a Hermite-Gaussian beam is characterized by two indices (I, m), which in-
dicate spatial dependencies in the  and y directions, respectively. The complex amplitude
of a Hermite-Gaussian beam is often written as

" 22 412
Ui (r) = Apm, WIXZ) G W(z2) Gm %] exp [—ik:z — ik 2R~Ezy) +i(l+m+ l)ga(z)}, (6)
where )
Gn(u) = H,(u)exp (%), n=0,1,2 ... (7)

is the Hermite-Gaussian function of order n, H,(u) is the nth-order Hermite polynomial®,
A is a constant, and the following are properties of Hermite-Gaussian beams:

e R(z) is the radius of curvature of the wavefront,

e W(z) is the beam radius along the z-axis,

Wy is the beam waist, or minimum spot size of the beam,

zr is the Rayleigh range, or the distance along the z-axis at which the wavefronts of
2
the beam are most curved, and is defined as zr = %, and

e (z) is the Gouy phase shift of the beam, defined as

©(z) = arctan <i> (8)

ZR

We can refer to the Hermite-Gaussian mode with spatial indices (I,m) as TEM,,,. The
fundamental Gaussian mode is thus referred to as TEMyy. The resonance frequencies of the
TEM modes are now dependent on these mode indices (I, m), as well as the radii of curvature
of the cavity mirrors. Their spacing from the resonance frequencies of the TEMg, mode is an

1See Appendix A.
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integer multiple of the Transverse or Spatial Mode Spacing, or vr\g for short. This is given
by
[+m

)cos™t Vi )

where vpsg = 57 as before. The parameters g, and g, are known as the g-parameters of the
cavity, and are defined as

VrMs = VFSR(

L L
=1-= and gp=1— —, 10
g1 R and gz R, (10)
where Ry and Rj are again the radii of curvature of the cavity mirrors [7]. We can also write

Equation (9) as

l+m
UTMS = VFSR( - )A% (11)

where Ay is the total Guoy phase shift of the cavity, defined as
Ap = p(2) = ¢(21) = cos™ £/g10s. (12)

We can thus write the resonance frequencies of the general spherical-mirror cavity mode as

l+m+1
Vimg = qVFSR + (T) vrsr Ay, (13)

where ¢ is an integer indicating the longitudinal mode number.

To summarize the spacing of the modes of a spherical-mirror cavity:

1. The different longitudinal modes of the cavity are those with the same values of (I, m)
but different values of g. As in the Fabry-Pérot cavity, adjacent resonant frequencies are
separated by vpggr; thus, the longitudinal mode spacing is determined by the absolute
length of the cavity.

2. Different transverse modes are determined by the indices (I, m), which indicate spatial
dependencies along the x and y axes, respectively. Adjacent transverse modes with
indices (I3, m1) and (I3, ms), of the longitudinal mode ¢, are spaced by

(14)

vrsr Ap

Yiymi,qg = Vigsma,g = [(ll + ml) - (ZQ + mQ)]T
apart. Thus, the spacing of the transverse modes of a cavity depends on the radius
of curvature of the cavity mirrors [15]. The intensity distributions of several of the
low-order transverse Hermite-Gaussian modes are shown in Figure (2).

In Section (3.2), we noted that by measuring the free spectral range of a cavity, we can
determine the cavity’s length. Similarly, by measuring the spacing of adjacent transverse
modes, we can learn about the radius of curvature of the cavity mirrors. In this project, we
explore whether we can use this correlation between mirror radius of curvature and transverse
mode spacing as a sensor for mirror figure error.
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Figure 2: Intensity distributions of several transverse Hermite-Gaussian modes. The indices
(I,m) are labeled beneath each mode. We can see that the intensity distribution of the mode
with indices (I, m) has [ nodes along the horizontal direction and m nodes along the vertical
direction.

4 Experimental Methods

Our experimental plan is as follows:

1. Simulation in Finesse.

e Configure Finesse (see Section 4.1) to simulate an ideal Fabry-Pérot cavity with
the parameters of the LIGO 40m prototype interferometer.

— Scan the cavity over a range of input frequencies. Plot the transmitted power
of the cavity as a function of frequency to observe the resonant transverse
modes of the cavity.

e Introduce a misaligned and mode-mismatched beam into the Fabry-Pérot cav-
ity simulation. Observe the deviations in the transmitted power output from
the mode-matched beam. Develop a fitting algorithm to predict the finesse and
length of the cavity and the radius of curvature of the cavity mirror based on the
cavity transmitted power. Compare these predictions to the simulation settings
to evaluate the fitting algorithm.

e Introduce random figure error to one of the cavity mirrors in the simulation.
Observe the effect of this error on the higher order mode spacings of the cavity.

2. Use the knowledge gained in the simulation to create a “mirror map” of a cavity mirror
using the results of cavity scan techniques.

e Generate thousands of potential perturbations in the cavity mirror surfaces and
their effect on the optical loss of the cavity. Then, use a Monte Carlo method to
try to fit actual cavity scan transmission data to a linear combination of these
potential mirror surface perturbations. This will allow us to characterize the
sources of optical loss in a cavity as perturbations of the cavity mirrors.
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e Use Bayesian inference methods in coordination with the above to predict the
probability of loss in a cavity arising from particular perturbations in the cavity
mirror surfaces. This involves continually updating the probability of perturba-
tions contributing to the cavity transmission as more information becomes avail-
able. Thus, as the fitting algorithm continues, the perturbations that are more
likely to be present in the cavity are isolated.

3. Ultimately, apply the above algorithms to actual cavity transmission data from the
LIGO 40m prototype interferometer to evaluate mirror figure error.

4.1 Hermite-Gaussian Modes in Finesse

To simulate optical cavities, we can use the software package known as Finesse, created by
GEO 600, to run simulations of user-defined optical cavities [8]. This software allows us to
both define our own optical setup and to run scans of these cavities.

To use Finesse to simulate an optical cavity, we specify the optical components present and
their attributes in an input file with the file extension ‘.kat’. We begin by simulating a Fabry-
Pérot cavity set with the parameters of one arm of the LIGO Caltech 40-meter prototype
interferometer. We set the parameters of the optical cavity as follows [9]:

H parameter value H
laser wavelength (o) 1064 nm
cavity length (L) 40 m
ITM reflectivity (R) 0.08616
ITM transmissivity (T) 0.01384
ETM reflectivity (R) 0.9999863
ETM transmissivity (T) 13.7 -107°
ITM radius of curvature (R;) 00
ETM radius of curvature (Ry) 57 m

Figure (3) shows the setup of our simulated cavity in Finesse.

Laser
E H 40m Cavity FS)
A = 1064 nm
ITM ETM
RoC = o0 RoC =57m

Figure 3: Finesse simulation optical setup. A photodetector is placed after the ETM to
measure transmitted power.

By default, Finesse uses a plane wave approximation of the laser light. We can manually
switch to Hermite-Gaussian beams using a command in the input file that specifies the
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highest order (I + m) of Hermite-Gaussian modes to be used. We can then individually
specify the TEM modes to inject into the cavity, and their relative powers.

We begin with only the fundamental (Gaussian) mode present, TEMgy. We set Finesse to
measure the transmission of the cavity past the second mirror (ETM) using a photodetector,
varying the frequency over a range of 20 MHz. Figure (4) shows the resulting plot.

107 Fundamental Mode Resonances

103 o

104

Transmission (log scale)

0%}

10-5 I I I
-10 -5 0 5 10
Frequency Shift (MHz)
Figure 4: Transmission of 40-meter FP cavity across 20 MHz frequency shifts. Adjacent

peaks are separated by vpggr.

We observe in Figure (4) that adjacent resonant peaks are a distance of

c
VFSR — i ~ 3.75 MHz (15)

apart, as they are expected to be.

Now, we can insert higher order modes into the cavity and observe their frequency spacing.
We can choose to either leave or remove the fundamental TEMgg mode; for now, we shall
leave the fundamental mode and insert the modes of order 1, each at 50% power relative
to the fundamental mode: TEM;q and TEMg;. Because the simulated optical cavity is not
astigmatic, these modes have the exact same resonant frequencies (see Figure 5).

In Figure (5), the first order modes appear as the shorter peaks to the right of the funda-
mental modes. Each first order peak is once again separated from adjacent first order peaks
by a distance of vpgg. To find the spacing between the fundamental mode and the first order
modes, we refer to Equation (9). For both first order modes, we have [+m = 1, so transverse
mode spacing vy becomes:

1% _
VTMSs = ( FWSR> cos™! Vv 9192 (16)

The g-parameters for this cavity are given by:

L
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TEM m+n<=1

mn*

10!

Transmission (log scale)

107}

10 i i i
-10 -5 0 5 10

Frequency Shift (MHz)

Figure 5: Transmission of 40-meter FP cavity across 20 MHz frequency shifts. Three modes
are present: TEMO(), TEMlo, and TEMOl.

L
g = 1= -~ 0.298 (18)

Thus, the transverse mode spacing is given by

75 MH
Vrnts = (M> cos ™! /(0.208)

™

vrMs ~ 1.19 MHz. (19)

We can see in Figure (5) that this is indeed the frequency spacing between the fundamental
mode and its corresponding first order mode.

When a laser beam is aligned to a Fabry-Pérot cavity, only the fundamental mode will
appear, as in Figure (4). A beam that is misaligned with the cavity will also result in the
appearance of several higher-order modes. To represent a misaligned beam in our simulation,
we can thus manually insert several higher-order modes using a Finesse command. In the
simulations for this project, we inserted all modes up to order [ +m < 9. This results in an
ideal transmission spectrum as shown in Figure (6).

4.2 Zernike Polynomial Surface Perturbations

The simulated cavity transmission spectra shown in Figures (4), (5), and (6) are calculated
with ideal cavity mirrors. In a mirror with figure error, the higher-order mode peaks are
shifted from their ideal resonant frequencies.

We can characterize the surface defects of an optical mirror using a phase map. A phase
map is essentially a two-dimensional matrix containing the relative height of the surface at
a point (z,y) on the mirror. Thus, they show how the path length through which the laser
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TEM
10-2 T T T T T T T

m+n<9

mn*®

103}
104 1
10° : ’

10° |

Transmission (log scale)

107}

10° 1 1 ; 1 ; . mode order
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Figure 6: Simulated transmission of 40-meter FP cavity across 8 MHz frequency shifts. All
modes up to order (I+m) < 9 are included. Mode orders are indicated above their respective
peaks. As this simulates a perfectly spherical mirror, all modes with the same order (i.e.
TEM;o and TEMy,;) have the same resonance frequency and thus appear as one peak.

must propagate varies across the mirror surface. Figure (7) shows an example of a phase
map.

To simulate various surface defects on an optical mirror, we can apply perturbations using the
Zernike polynomials.? The Zernike polynomials are an infinite sequence of polynomials that
are orthogonal on the unit disk and are characterized by a radial index, n, and an azimuthal
index, m. Each polynomial corresponds to a type of optical aberration. As the Zernike
polynomials are linearly independent, individual aberrations can be applied by changing the
coefficient of the corresponding polynomial. Figure (8) shows the Zernike polynomials up to
order n = 5.

We begin by creating a phase map object in Finesse and applying it to the ETM. In Finesse,
the radius of curvature is a property of the mirror object. Thus, adding a flat phase map
to the ETM does not affect the perfectly spherical mirror; it is applied as if it were simply
added on top of the phase map in Figure (7).

Now, we introduce random perturbations to the phase map by choosing coefficients for the
Zernike polynomials from a normal distribution with a standard deviation of 4 nm. For our
simulations, we introduced coefficients for the first 120 Zernike polynomials (all polynomials
up to and including order n = 15). Our phase map now shows variations in surface height
on the scale of a few nanometers. These variations in surface height are applied on top of
the ETM; thus, while the mirror is still nearly spherical, realistic imperfections now scatter

2See Appendix B.
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Surface map zmap, type phase both
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Figure 7: Phase map for a perfectly spherical mirror with a radius of curvature of 57 m.

Figure 8: Zernike polynomials up to order n = 5.

page 12



LIGO-T1700196-v3

the surface.

Now, as before, we manually insert all Hermite-Gaussian laser modes into the cavity up to
order (I +m) < 9, giving each higher-order mode a tenth of the power of the fundamental
mode. The mirror figure error from the phase map causes the resonance frequencies of
the HOMSs to shift in the cavity transmission spectrum. Figure (9) shows an example of a
mirror map applied to the ETM in our simulation and its corresponding cavity transmission
spectrum.

le-7

T — 25
i DS. TEMm -m+n<9
B I 4 cm |

Laser «
40m Cavity M

4 cm

10°

PD
b '

05 05 10 15 20 25 30 35 2.0
Frequency Shift (MHz)

Figure 9: Example of a perturbed mirror map applied to the ETM. Hermite-Gaussian laser
modes up to order n = 9 are injected into the cavity, and the corresponding cavity trans-
mission spectrum is shown at the right.

If we run this simulation many times, each time generating a new set of normally distributed
Zernike coefficients, we can get a sense for how much each HOM shifts with the induced
surface perturbations. Figure (10) shows the resulting transmission spectra from 60 random
phase maps.

4.3 Shifts in Transverse Mode Spacings

The shifts in the higher-order mode resonance frequencies can tell us some information about
the effective cavity parameters resulting from the surface perturbations.

For a given transmission spectrum, we can find both vpgr, the spacing between adjacent
fundamental mode peaks, and vyg, the difference in frequency between a higher-order mode
peak and the fundamental mode peak. Figure (11) shows how we can read these values off
of a transmission spectrum.

As we saw in Section (3.3), vrums should vary linearly with Hermite-Gaussian mode order:

el R
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Figure 10: Transmission spectra from 60 phase maps with random Zernike coefficients. The
red line shows the transmission spectrum from an ideal cavity.

VFSR

UTMS

Transmission (log scale)

10°}

— Figure error N
—— ldeal cavity

107 mode order : ’ : : : .
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Frequency Shift (MHz)

Figure 11: The blue line above shows the transmission spectrum from the phase map in
Figure (9), while the red line shows the transmission spectrum from a perfectly spherical
mirror. We can see that the blue peaks have shifted horizontally from the ideal red peaks.
vrsr is the frequency spacing between adjacent fundamental peaks, while vryg for a given
HOM is the frequency spacing between the fundamental mode peak and the higher-order
mode peak. vrys for modes of orders 1 and 2 are shown in the figure.
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We recall that in our setup, R; ~ co. Thus, Equation (20) becomes:

l+m _ L
UTMS = ijsR( - ) COS ! (1 — R—) (21)
2

From Equation (21), we can see that a
change in the radius of curvature of the
ETM, R,, results in a change in vryg. How-
ever, by introducing figure error to our ETM
in the form of Zernike coefficients, we have

inadvertently introduced a minute change in oo A
the radius of curvature of the mirror. Thus, 5 ‘ 5 ‘ ‘ 5 ‘ *
a slight change in vry\g is to be expected. : : , :
To confirm this, we can perform a linear i ;
fit on the shifted vryg values and compare _ !
them to the ideal vryg values. In Figure g b ’
(12a), a linear fit of the transverse mode 2 ;
spacings for the transmission spectrum in A T R
Figure (11) is shown in blue, while the ideal N
transverse mode spacings are shown in red. : ; § ‘ | déal e ”ne'ar o
The value of vryg can be seen in the slope of 2 28 Figure error, linear fit ||
each line. While the ideal data has a value d : e®e Ideal cavity
: : : i ees Figure error
of 0 . ‘ ; ‘ ‘ . ‘ .
vrvs & 1.185 MHz, T e
corresponding to an ETM radius of curva- _ ! !
ture of 57.0 m, the shifted data has a value : 7 SO A L
of E A
vras ~ 1.194 MHz, i 13 T
corresponding to an effective ETM radius of o 1 2 3 4 5 6 71 8 9
Mode order

curvature of 56.44 m.

This correlation between vryg and radius of
curvature is already well understood. How- Figure 12: (a, above): Linear fit of ideal trans-

ever, the shifted transverse mode peaks do verse mode peak frequencies (red)
not perfectly align with the expected linear and transverse mode peaks corre-
values given the new effective radius of cur- sponding to the system with phase
vature. We can see in Figure (12b) the resid- map shown in Figure (9) (blue).
uals for this particular linear fit. Here, figure (b, below): Difference between
error with a standard deviation of ¢ = 4 nm shifted transverse mode peak fre-
has resulted in a shift of ~ 5 kHz from the quencies and their linear fit.

vrus values from our linear fit.
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4.4 Bayesian Inference Methods

In the above sections, we have shown how figure error of the ETM results in shifts in the
transverse mode peak frequencies of a cavity’s transmission spectrum. The ultimate goal of
this research is to be able to apply this information to cavity scans of LIGO’s gravitational
wave interferometers in order to learn about mirror figure error of the actual cavity mirrors.

Given a particular mirror surface, we can measure the cavity transmission map relatively
easily using an experimental plan such as that described in Section (4.5). The inverse
problem - extracting the phase map of a cavity mirror from the transmission data - is
significantly harder. In order to extract the phase map, we need to model the dependence
of the two quantities (transmission data and surface maps). The ideal next step for this
project is thus to run thousands of our simulated cavity scans, each with a different phase
map. We would then apply Bayesian inference methods to calculate the most probable phase
map (characterized by Zernike polynomial coefficients) given a particular cavity transmission
spectrum (characterized by TMS residuals). Below, we discuss how to approach this problem
in terms of Bayesian inference methods.

The following paragraphs use the notation of [10]. Let us refer to the cavity transmission
data as the random variable Y, the measurement, and to the nonobservable phase map as
the random variable X, the unknown. Before taking a measurement of Y, we have some
information about X, which we can use to form the prior probability density m(z). We
can now express our main problem as: “Given the data Y = Yopserved, find the conditional
probability distribution m(x | Yobserved) 0f the variable X.”

In other words, given a certain measurement Yopserveqa 0f @ cavity’s transmission, find the
most probable phase map of the cavity mirror. Essential to solving problems of this form is
Bayes’ theorem of inverse problems, which is given in Appendix C.

To solve an inverse problem of this form, we can follow three overarching steps outlined in
[10]:

1. Find a prior probability density 7, that reflects all prior information known about the
unknown X.

2. Find the likelihood function, w(y | ), describing the relationship between the unknown
and measured quantities.

3. Develop a method to extract m,.(x), the posterior probability density.

In practice, one method that is commonly used for Bayesian inference is known as Markov chain
Monte Carlo (MCMC). This relies on the concept of a Markov chain, which is a process with
the property that, conditional on its nth step, its future values do not depend on its previous
values. MCMC aims to first create a Markov process that has m(2 | Yopserved ), the posterior
probability distribution of X, as its stationary distribution. We can then run this Markov
process long enough such that the resulting output is a close approximation of 7(2 | Yobserved)-
By the law of large numbers, as the sample size n of the approximation increases, the ap-
proximation increases in accuracy.
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A promising immediate next step for this project is to attempt to implement the above
method using the Python emcee [13] and/or PyMC [14] packages.

4.5 Experimental Plan for Cavity Scan

Finally, in order to apply knowledge learned from the simulations above, we must have a
method for measuring the transmission spectrum of an actual GW interferometer. In this
section, we describe a technique for experimentally measuring the mode spacings of an optical
cavity as outlined in [15].

In this method, one main laser beam and one auxiliary beam are injected into the optical
setup from the dark port. The two beams are set to different frequencies, which are stabilized
by a servo in the phased-locked loop (PLL). As in our simulation above, a photodector
connected to a RF analyzer is used to read the transmission of the cavity. When the auxiliary
beam is at a resonant frequency of the cavity, frequency beating appears in the cavity
transmission. Thus, the mode spacings of the cavity can be read directly from the LO
frequency of the PLL when the cavity transmission is at its maximum.

Length
EODH Control
\\ Servo Loop
PSL 13.5m MC Filter \
[ o 5
EOM RF PD
\ RF Analyzer
— Beat Detection
NPRO
Phase l
Locked RF PD
Loop
AU)PLL LO
Servo Filter

Figure 13: Optical setup for measuring cavity mode spacings. Source: [15]

As the frequency of the PLL LO is swept over a range of around 20 MHz, several equally-
spaced peaks will appear in the measurement of transmitted light amplitude. Each peak can
be fit using the formula

V() = (22)

/ — 2’

1 _ (f f§0)
where f is the input frequency and A, fy, and f. are parameters. Once fit, the frequencies of
each peak will be related linearly; the spacing between them is the free spectral range, vpgg.

Once this spacing is found, we can use Equation (5) to calculate the approximate length (L)
of the cavity.

To measure the transverse mode spacings of the cavity, we can insert a razor blade into the
setup such that it blocks half of the beam either horizontally or vertically. In addition, the

page 17



LIGO-T1700196-v3

auxiliary beam described above is misaligned. Both of these processes allow the first order
Hermite-Gaussian modes (TEMy;/19) to appear in the cavity transmission measurement.
Once again, we can fit these peaks and determine the spacing between adjacent peaks.
Using Equation (9) and the measured vpgg from the TEMg, mode, we can then calculate the
radius of curvature of the cavity mirror. In addition, if the TEMg,; /10 modes have different
resonance frequencies, indicating different radii of curvature in the horizontal and vertical
directions, we can diagnose the mirror as astigmatic.
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Appendix A. Hermite Polynomials

The Hermite polynomials are an infinite sequence of orthogonal polynomials. The Hermite
polynomial of order n can be found by the generating function [6]:

20t —t2 - Hn@)tn

[ =

= (23)
n=0 '

The first several Hermite polynomials are listed below:

| order (n) H,(x) |
0 1
1 2z
2 4o — 2
3 8% — 12z
4 162" — 482% + 12
) 322° — 1602° + 120z

Appendix B. Zernike Polynomials

The Zernike polynomials are an infinite sequence of polynomials that are orthogonal on the
unit disk, characterized by two indices (n,m). The first several Zernike polynomials Z* are
listed below:

| radial order (n) azimuthal order (m) Z(p,0) |
0 0 1
1 1 2pcosf
1 -1 2psin 6
2 0 V3(2p7 — 1)
2 -2 v/6p? sin 260
2 2 V6p? cos 260
3 -1 V8(3p> — 2p)sin
3 1 V8(3p> — 2p) cos
3 -3 V/8p% sin 30
3 3 44/8p* cos 36

Appendix C. Bayes’ theorem of inverse problems

The following is quoted from [10], p. 51:

Bayes’ theorem of inverse problems: Assume that the random variable X € R"
has a known prior probability density . (x) and the data consist of the observed value Yopserved
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of an observable random variableY € R* such that T(Yepserved) > 0. Then the posterior probability
distribution of X, given the data Yopserved, 4S:

Tpr\ T )T Yobserved | L
7Tpost<x) = 7T(ZL‘ | yobserved) = -t ( 72(y<b d) | ) (24)
observe
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