MULTI-MODE THERMAL NOISE EXPERIMENT, MIT

A DIFFERENT WAY OF LOOKING AT COATING THERMAL NOISE

Slawek Gras, Matthew Evans

Objectives:

- Refine thermal noise estimates for current aLIGO coating,
- Test of coating candidates for 3rd generation gravitational wave detectors

Three different modes resonates in the cavity:

P-polarization modes

S-polarization mode (ties laser frequency to cavity length)

- "only" sensitive to differential signal between the TEM02 and TEM20 (even modes used to avoid alignment sensitivity)
- fluctuations which are correlated over the beam size will be cancelled mirror motion, clamping losses, ...

This method promises to provide a flexible means of measuring the thermal noise and material properties of a wide variety of coatings.

Cavity design

large spots on non-sample optics, sample is any 1" HR flat (e.g., typical witness sample)

The Experiment

The Folded Cavity

Resonant modes

Advanced LIGO End Test Mass witness sample: last year measurement

Advanced LIGO End Test Mass witness sample: better measurement with upgraded readout

S. Gras, GWADW 2017

Same slope (~ f^{0.45}) as Advanced LIGO witness sample

- MIT Lincoln Laboratory:
 - coating machine that allows production of new coating designs
 - \rightarrow Quick turnaround of coating production
- LMA (more details in Granata's talk)
- Coming next:
 - study of CTN vs beam spot size
 - study of interface losses
 - measurement of crystalline coatings

- So far the MIT multi-mode coating thermal noise experiment has measured two aLIGO samples, one LMA sample, and one test coating from Lincoln Lab
- Improved experiment readout allows measurements with high SNR
- Recent results
 - improved measurement of Advanced LIGO samples shows slope ~ f^{0.45}
 - same slope observed in new LMA coating design (4% higher noise in amplitude over Advanced LIGO sample)
- Transitioning to "facility" mode:
 - We can measure any 1" flat high reflector
 - Mirror swap + measurement now take one day, very quick
 - IF YOU HAVE A NEW COATING TO TEST, LET ME KNOW!

Thanks!

CTN setup

one laser, 2 AOMs: 3 different frequencies mix of fiber and free space optics

W. Yam, S. Gras, M. Evans, Budapest 2015

Coating Thermal Noise in TEM02 - TEM20 signal

$$\frac{CTN_{02-20}}{CTN_{00}} \gg 1.07$$

(for our beam size, coating thickness, and substrate material)

