LIGO Characterization of Advanced LIGO Core Optics

GariLynn Billingsley, Hiro Yamamoto, Liyuan Zhang

ASPE Topical Meeting Precision Engineering and Optics April 24-25, 2017

LIGO Laboratory: two Observatories and Caltech, MIT campuses

The basic LIGO layout

Advanced LIGO Suspensions

340 mm Ø, 200 mm thick40 Kg Fused Silica

Core Optics

LIGO

LIGO-G1700743-v1

Arm Cavity Loss details: Results are within budget

Round Trip Cavity loss 2 surfaces (ppm)	Design Budget (ppm)	Actuals (modeled) based on average of completed pieces in 2013 (ppm)
Microroughness scatter (>1/mm)	8	4.4; 2.2 Per mirror
Defects (Polish, Coating, Contamination)	26	20; 10 per mirror includes polish and coating
Coating Absorption	1	0.6; 0.3 per mirror
Surface Figure Error & Diffraction	24	16.2
ETM Transmission	5	4.2
Total (required < 75 ppm)	64	45.4

Design approach

- Fused silica substrates
 - » Low OH Fused silica used for in-cavity optics:
 - Beam Splitter
 - Compensation Plate
 - Input Test Mass
- Two step polish:
 - » Superpolish: ~1 Å microroughness, within 100nm of figure
 - » Ion Beam Figuring: Corrects figure, maintains microroughness
- Ion Beam sputtered coating
 - » Test Masses coated at LMA – Lyon France
 - » Recycling Cavity optics coated at CSIRO
 - Lindfield Australia

Figure, as polished Tilt, Power and Astigmatism removed

LIGO Figure measurement: Fizeau Interferometer

- Zygo interferometer installed at Caltech, 1064 nm
- 4 magnifications; 1X, 2X, 10X, 20X
- The instrument and environment are quite stable, showing a uniform noise floor of 0.1 to 0.15 nm rms.
 - » Polishing requirement is 0.3 nm rms
 - » Vendor reports some surfaces at 0.08 nm rms
- Good agreement with Polishing vendor measurements

LIGO Before and after coating measured on different instruments

300 mm diameter, same color scale, Power subtracted (Δ 3.5nm)

Uncoated (Zygo EPO) 11.4 nm PV 1.7 nm rms

Coated at CSIRO (LIGO) 9.8 nm PV 1.6 nm rms

Applied Optics

OSA

Mark Gross, Svetlana Dligatch, and Anatoli Chtanov, "Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method," Appl. Opt. 50, C316-C320 (2011)

Before and after coating measured on different instruments

Instrument transfer function

Provided by Zygo Middlefield

LIGO-G1700743-v1

14

Instrument transfer function Correction?

Compare 1x data to 10x using different methods

10X taken with a cavity length of 80 mm

10X taken with a cavity length of 130 mm

PSDs of ETM11 Compare Coated and Uncoated

LIGO LIGO Scientific Collaboration

LSC

Thank you

See also losc.ligo.org dcc.ligo.org

LIGO-G1700743-v1

Compensation plate and ITM

Noise summary

Broadband tuning, full input power (125 W)

Limiting noise sources at 40 Hz:

- Quantum noise
 - Shot Noise
 - Radiation Pressure
- Coating Brownian noise