Laser Interferometer Gravitational-wave Observatory Where do we stand?

Daniel Sigg

LIGO Hanford Observatory California Institute of Technology

> GWADW 2017, May 8, 2017

For the LIGO Scientific Collaboration and the Virgo Collaboration

LIGO-G1700726-v2

Stated Goals for O2	How did we do?
Diagnose & reduce low frequency noise (f < 150 Hz)	Only small improvement on L1 Identified scattered light as needing work
Double the laser power (100 kW -> 200 kW arm power)	Got close with H1, but with a noise penalty
Work on transient noises and spectral lines	Some progress
More robust operation (low-noise duty cycle)	Definite payoff from suspensions dampers & seismic (tilt sensors)

Small point absorber (~10mW)

Resulting phase front distortion is problematic:

- > RF sideband build-up
- Wavefront sensing
- Noise couplings
- > Higher-order mode jitter!

PI damping successful (10 modes at 50W)

Thermal compensation worked

But: Noise worse at 50W

Light Scattered

End Stations: ETM wide angle scattering

Light scattered from the ETM is directed through a viewport and then scattered/reflected back in – hitting vibrating components along the way

View into HAM5 chamber

A campaign to improve in-vacuum scattered light baffling in underway this will be one of the main post-O2 upgrades

 Injection locked laser generates large amounts of beam jitter
Including higher order modes!

Long term: May require Jitter Attenuation Cavity

- Fixed mirror
- Triangular, in vacuum

□ Suppression: ~50

□ Fix LHO-ITMX Contamination

- ➢ Will try to clean ITMX in early now
- ➢ If successful, will try to go back to 50W
- If unsuccessful, will require ITMX replacement after O2

Squeezed Light Injection at LLO

- Target is 3 dB of effective squeezing: equivalent to doubling the laser power
- Possibly LHO as well?

Stray Light Control Improvements

- **70 W Amplifier Stage at LLO to Double the Laser Power**
 - LHO: likely to move from the HPO to a 70 W amplifier as well

□ Replace End Reaction Masses with Annular Versions

- Squeezed film damping; possibly electro-static charge
- ➢ May also replace ETMs at LHO
- Monolithic Signal Recycling Mirrors
- □ LHO: Long vent

LLO

O3 readiness will be driven by achieving a significant sensitivity increase over O2

Observator ivingston

Observator Hanford

Suspension **Test Mass**

Specifications:

- Diameter: 340 mm
- Thickness: 200 mm
- ➤ Mass: 39.6 kg
- > ROC: 2250 m / 1940 m
- Figure: <1 nm rms</p>
- Scatter: ~10 ppm
- Surface absorption: ~0.3 ppm
- Bulk absorption: ~0.2 ppm/cm
- ➤ HR transmission: ~4 ppm
- AR reflectivity: ~200 ppm

Platform Seismic Isolation

Input Optics Table

Lase **Pre-Stabilized** 200W

