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Abstract

The first direct detection of gravitational waves was recently announced
by the LIGO (Laser Interferometer Gravitational Wave Observatory) Col-
laboration. Besides the chirp waves produced by compact binary coales-
cences as in the case of the first event, a stochastic gravitational wave
background is expected to arise due to the overlap of many individually
indistinguishable sources that are both astrophysical and cosmological in
nature. General Relativity predicts two tensorial gravitational wave polar-
ization modes, but general metric theories of gravity allow four additional
scalar and vector modes. Detection of these non-tensorial polarizations in
the stochastic background would indicate that the theory of gravity should
be extended beyond General Relativity. While the unique separation of
the three types of polarizations is not possible given a two-detector net-
work like LIGO, we compute the signal-to-noise ratio assuming a stochas-

tic background dominated by each mode || NN
|



1 Introduction

1.1 The Stochastic Background

A random gravitational wave background is predicted as a result of many
overlapping, individually indistinguishable sources, which may be both astro-
physical and cosmological in nature. Such sources include compact binary co-
alescences, core collapse supernovae, inflation, phase transitions, and cosmic
strings, among others [1]. A background dominated by astrophysical sources
would provide information on the star formation history, merger rates of com-
pact binaries, and the mass range of the progenitor systems. Meanwhile the
detection of a cosmological background would offer insight into the state of the
universe in the moments immediately following the Big Bang [2].

When conducting searches for the stochastic background, one typically seeks
to measure the ratio of the energy contribution due to gravitational waves to
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where Hy is the Hubble expansion rate [1]. The gravitational wave energy
density describes the spectrum of the stochastic background as a function of
frequency and is often modeled as a power law,

Qgu = Qa(f/f0)?, (2)

where o = 2/3 for astrophysical backgrounds and « = 0 for cosmological sources
and fp is an arbitrary reference frequency [3]. The current best upper limit on
the stochastic gravitational wave background energy density from the ground-
based LIGO and Virgo detectors is 04, < 5.6 x 1076 [4].

Certain statistical assumptions must be made to give a more robust descrip-
tion of the stochastic background than that provided by the spectrum alone.
We assume that such a background is stationary, isotropic, unpolarized, and
Gaussian. For a signal to be stationary, it must depend only on the differences
between observation times and not on the absolute times themselves. Because
the age of the Universe is at least 20 orders of magnitude larger than the pe-
riod of gravitational waves detected by ground-based interferometers, no time
dependence is anticipated [1].

If the stochastic background is analogous to the Cosmic Microwave Back-
ground, it is justified to assume that it would be highly isotropic. However, the
directional dependence of the background will ultimately depend on its sources.
For example, a stochastic background dominated by coalescing binaries in one
area of the sky will be highly anisotropic, while one resulting largely from cos-
mological sources will show no directional dependence.

The final assumption is proven by the Central Limit Theorem, which states
that any random process created by the superposition of independent random
variables will be Gaussian [5]. As long as the stochastic background is a result of



many overlapping and independent gravitational wave signals whose individual
duration is much larger than the time between events, its statistical proper-
ties will be entirely determined by the first and second moments of the strain
recorded in a detector [2]. However, the Gaussianity of the signal is also source-
dependent. A black hole background, for example, is expected to be populated
by events whose duration is shorter than the time separating them, which would
result in a non-Gaussian, ‘popcorn’ signal where waveforms no longer overlap
and the amplitude at the detector is unpredictable at a given time [2].

1.2 Gravitational Wave Polarizations

In General Relativity, gravitational waves are transverse, represented by
second-rank, symmetric, traceless tensors [6]. This theory only allows two states
of polarization—the plus and the cross modes—but in a general metric theory
of gravity up to six independent polarizations are allowed. Besides the two
tensor modes allowed by GR, these include the x and y vector modes and the
longitudinal and breathing scalar modes with basis tensors given by
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for a GW propagating in the z direction [7]. The tildes denote that the defini-
tions are given in 3-dimensional Euclidean space rather than in 4-dimensional
Minkowski spacetime. Unlike the plus and cross modes of General Relativity,
the scalar modes are not traceless. The effect of each type of polarization on a
test mass ring is shown in Figure 1.

Depending on the corresponding gravity theory, these extra polarizations are
due to the extra degrees of freedom associated with scalar fields or to the ability
of the graviton to propagate into extra dimensions. Not all modes appear in
all theoretical models; most of the cosmologically interesting theories are of the
scalar-tensor variant, in which no vector polarization appears [7]. While a tensor
stochastic background has not yet been detected, a search for these additional
non-tensorial polarizations would test the limits of GR. If extra polarizations
were detected, this would indicate that the theory of gravitation should be ex-
tended beyond General Relativity, while a nondetection could exclude certain
theoretical models. Besides the implications for gravitational theory, GW polar-
izations can also provide information about the orientation of their progenitor
systems and about the accelerated expansion of the universe [6] [7].
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Figure 1: Graphic from [7] showing the effect of a passing gravitational wave
with each polarization on a test mass ring, with the direction of propagation
given in the upper right corer. The ® symbol indicates that the wave vector is
directed into the page.

This analysis seeks to extend the current stochastic search framework to
non-tensorial polarizations. The modifications to the stochastic pipeline will be
tested on simulated noise and ultimately on both singly-polarized and mixed-
polarization simulated signal. The modified pipeline will be used to conduct
the search for alternative polarizations in aLIGO data || RN

. We also develop a model selection
procedure with which to separate the amplitudes due to each polarization for a
signal of a fixed spectral shape in a two-detector pair.

1.3 The LIGO Detector

In order to detect a stochastic background, the strain data from two detectors
must be cross—correlated. In a single detector, the noise would be much louder
than the astrophysical contribution from a stochastic background. By cross—
correlating the total strain, this effectively mitigates uncorrelated noise, and the
resulting signal is dominated by the astrophysical contribution. The Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) is a pair of ground based in-
terferometers located in Hanford, Washington, and Livingston, Louisiana. Each



detector consists of a Michelson Interferometer with 4 km long arms, with a
Fabry—Pérot cavity in each arm. Laser light is sent to a beam splitter, which in
turn redirects the beam to travel down the two arms. Upon reaching the end
optics, the light is reflected and recombined at the beam splitter and sent to a
photodetector. The effect of a gravitational wave is to compress the arm length
in one direction while stretching it in the perpendicular direction. This results
in a phase shift between the two light beams, producing an interference pattern
that is recorded by the photodetector upon recombination [8].
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Figure 2: Schematic of a Michelson Interferometer from [9] like the one used in
the two LIGO observatories. Laser light incident on the beam splitter is sent
down the two arms and reflected back by the end test mass. In the presence
of a gravitational wave, the arm length will be compressed in one direction and
extended in the other, leading to a phase shift observable as an interference
pattern in the recombined light received by the photodetector.

After a series of updates to the Initial LIGO instrument, the Advanced
LIGO (aLIGO) detector completed its first science run in January 2016. The
laser power was increased from 10 W to 20 W, with a corresponding increase in
both the diameter and the mass of the end mirrors. Initial LIGO used 25 cm,
11 kg fused silica masses, while those used in aLIGO are 34 cm with a mass
of 40 kg. The diameter increase will counteract thermal noise and the increase
in mass minimizes the effects of shot noise. The suspension system has also
been upgraded to a four—pendulum setup, with fused silica fibers replacing the
previously used steel wires. This upgrade to the seismic isolation system has
extended the lower limit of the frequency band from 40 Hz down to 20 Hz [10].



The combined effect of the system upgrades will be to improve the sensi-
tivity across the entire frequency spectrum by at least a factor of 10 and to
deepen the field of view of the detector. For example, binary systems made
up of 1.4Mg inspiraling neutron stars will be detectable at distances 15 times
greater than with Initial LIGO [10]. A coalescing binary black hole system was
detected by the aLIGO instrument on September 14th, 2015, representing the
first direct detection of gravitational waves. A second BBH event was observed
on December 26th, 2015, and along with another candidate event (which didn’t
pass the detection procedure due to a much higher false alarm rate) ushered in
the era of gravitational wave astronomy [11].

2 Formalism

2.1 Antenna Pattern Functions

Before beginning the cross-correlated analysis, we consider the response of
a single detector to a gravitational wave propagating in the direction of the
unit vector €. The response function (also called the antenna pattern) of the
detector for a specified polarization is given by a tensor contraction between
the detector tensor, D, and each polarization tensor €4, where A denotes each
polarization mode [7]:

Fa(Q2) =D : é4(), (3)
D:%m®a70®w. (@)

The unit vectors  and v point along the direction of each of the arms of the
interferometer in the Earth-based frame. We define the orthonormal coordinate
system of the gravitational wave as:
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In this new frame, the polarization tensors can be written as:

6, =Mm®Mm-A®N, &) =meOi+hemn, 8)
&, =meQ-Qem, & =n20-Q5, (9)
G=mem+nen  &§=1202Q. (10)

F4(€2) is plotted in Figure 4 for all six polarizations. Because the antenna pat-
tern functions for the two scalar modes are degenerate, they cannot be separated
by a ground based gravitational wave detector [7].
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Figure 3: Coordinate systems schematic from [7].

2.2 Cross-Correlation Analysis

The total strain, s in each detector can be written in the Fourier domain as

3(f) = h(f) +0a(f), (11)

where h is the astrophysical contribution and n represents a noise term. At a
given position X, A(f) can be written as a sum of the contributions from each
sky position €2 and wave polarization A,

WP =Y [ dfeha(r e 2 IOR (1.9, (12)
A /92

The stochastic search seeks to measure the gravitational wave power spectral
density, which for a specific polarization is given by

Sa(f) = k(ha(f)ha(f)), (13)

where k is the Fourier normalization constant [7]. This quantity is related to
the gravitational wave energy density via

7.[.2
Vulf) = 372 1*5a(0). (14

Assuming the noise is uncorrelated between the two interferometers, the total
strain 3(f) can be substituted for h(f) in the power spectral density without
any loss of generality.



Figure 4: Antenna pattern functions, |FA(Q)|, for the plus, cross, longitudinal,
breathing, y, and x modes from top to bottom. The axes are given by the
interferometer schematic in the middle of the figure.



In the frequency domain the cross-correlation statistic, Y, is defined as
v= [ [ s - ss @) (15)

where 07 (f) is the finite-time approximation for a delta function and Q(f) is
a filter function that can be chosen to maximize the signal-to-noise ratio. The
ensemble average of Y is given by

p=(Y) (16)
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which can be written in terms of the energy density due to each polarization as
p= ;éng/o; df I [QLAT + QY + €05, 7°1Q(F), (18)

by substituting Eq. 14 into Eq. 19 [7]. The gravitational wave energy densities
for each polarization are given by

0, =Qf, + 95, (19)
VvV _ oz

ng B ng + ng (20)
S _ b — Ol b

00, =1 +k), K=Q,,/%0,. (21)

In Eq. 18, the parameter ¢ is given by £ (1 + 2x)/(1 + k) and represents the
ratio of the energy densities of the longitudinal and breathing modes [7]. The
overlap reduction functions -y, which describe the degree of correlation between
signals in two detectors and depend on the detector geometry, will be discussed
in the next section.

Using the weak signal assumption and Eq. 19, the variance of the correlation
signal is

o? = (V%) = (Y)? = (Y?) (22)
T [ ~ 9
~ T [ arp i) (23)
— 00
where Pr(|f]) is the one-sided noise power spectrum density for detector I and T

is the total observation time. The signal-to-noise ratio is defined as SNR = u/o
so the filter function that maximizes this quantity is

~ _ V() (1 £1)
Q(f) = K ey 1)

where Q;vaT + Q;/wvv + §Q§w75 is abbreviated as v(f)Q4., and K is some
normalization constant [7].

(24)



2.3 Overlap Reduction Functions

For two coincident, coaligned detectors, v(f) is normalized to 1, but a sep-
aration between the detectors or lack of perfectly parallel arm alignment will
result in a decrease in sensitivity. These two factors imply that there is only par-
tial overlap between the gravitational strains recorded in the two detectors [1].
For each polarization and detector pair I.J, v is defined as

W= | P IANI BT 4 FYFY S, (25)
8w S2 -
5 AR

Wy = o [ AIRARI(ErE ¢ FYEY) O, (26)
87 S2
5 AR o

Vip= o | ETIEAYFIF] + FYF))dQ. (27)
47 S2

Because v depends only on the detector geometry, the expression for each po-

larization can be expanded analytically in terms of tensorial bases following the
derivation in [1]:

iy i s iy . a A

vy = pi (@)D Dy + p3' (@) Dy D didy + p3' () DY D did;dydy,  (28)
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D;; is the detector tensor defined in Section 2.1, AX is the distance vector
between the two detectors in the Earth-based coordinate system, and d; is the
unit vector in the direction of AX. The coefficients of Eqg. 30 can be written in
terms of the n' spherical bessel function of « as in [7]:

ot T U o
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The overlap reduction functions calculated using both the numerical and
analytical expressions are plotted in Figure 5. The apparent disagreement at
high frequencies is due to sampling the numerical calculation on a logarithmic
scale in frequency to minimize computation time. A comparison of overlap
reduction functions for the three polarizations is shown in Figure 6.
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Figure 5: Overlap reduction function, v as a function of frequency in Hz for the
tensor, vector, and scalar modes calculated using the numerical integration over
all space (blue) and using the analytical spherical bessel function expressions
(red). The two methods are equivalent so the curves directly overlap in all three
cases.
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Figure 6: Comparison of the overlap reduction functions for the three polariza-
tions as a function of frequency in Hz.
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3 Simulations

3.1 Recovering Injected Gaussian Noise

In preparation for modifying the stochastic pipeline to search for a back-
ground from non-tensorial polarizations in real data, we ran the search over
simulated Gaussian detector noise. After modifying the overlap reduction func-
tion script to include the vector and scalar polarizations, we used the predicted
noise power spectrum density for alLIGO design sensitivity to inject detector
noise for a period of 25,786 seconds starting on Oct 15 2015 14:29:43 UTC. For
each of the three polarizations, o(f) was computed following the formalism out-
lined in the previous section, and the results are shown in Figure 7. The spikes
in the distributions are caused by the zeros of the overlap reduction functions,
and the tensor polarization appears to be the least sensitive at high frequencies.

— Tensor
—  \Mector i

Narrowband sigma

10° 10
f [Hz]

Figure 7: Detector sensitivity to Gaussian noise injected for 25,786 seconds on
Oct 15 2015 14:29:43 UTC recovered using all three polarizations. The zeros of
the overlap reduction functions cause the spikes in the o(f) distributions, and
there appears to be a significant sensitivity difference between the tensor and
non-tensorial polarizations at high frequencies.
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3.2 Recovering a Simulated Signal

The next test of the modified pipeline was to verify its ability to recover
a simulated signal. Tensor, vector, and scalar signals with amplitude Qg4, =
2 x 1077 and spectral index o« = 0 were independently injected for the same
time period as the simulated Gaussian noise. The simulated signal was then
recovered assuming each polarization in turn as the model. The simulated
strain for each detector for a given injected polarization, A, is given by

A

it =y ag 1 =)

7(f) V11 ( )< 2 )+ \/2 LAV A+ s(f)) ( )>
(30)

i — (S 115 (f) z1(f) ),

50 =P (5 et + ) )
(31)

where

= [ OB (32

W?I(f)’Y?J(f) '

The functions z1(f) and z2(f) are complex numbers whose real and imaginary
parts are drawn randomly from the standard normal distribution for each fre-

quency and then normalized by a factor of 4/ %, where N is the number of
samples and AT is the inverse of the resample rate. The factors of v in Eqs. 32
and 33 are chosen such that ((hf(f))*h4(f)) = 184(f)v#4(f). The procedure
for recovering the signal remains the same as was detailed in Section 2.2, but

the optimal filter, Q(f), now becomes

< (DQELUFD
Q(f) = KB By ()

where M is the polarization assumed on recovery.

Figure 8 shows the narrowband point estimate, Y (f), and sensitivity, o(f)
for injected tensor, vector, and scalar signals, respectively. The blue curves
indicate recovery assuming a tensor model, the red indicates a vector model, and
the green a scalar model. The point estimate is normalized such that (Y'(f)) =
Qguw(f), and the result is consistent with the injected signal of Qg,, (f) = 2x10~7
at low frequencies where the stochastic search is most sensitive. Similar to the
case of simulated Gaussian noise, the tensor mode is less sensitive than the
vector and scalar modes at high frequencies.

The broadband point estimates and sensitivities are shown in Figures 9, 10,
and 11, along with the segment-by-segment SNR and the cumulative SNR as
a function of total observation time. The cumulative values, summed over the

(33)
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observation times %, are given by:

> Yo ® -2 -2 y?
Y ==—"2— o= o; SNR =4/ —-. 34
Y Yot R
The cumulative sensitivities overlap for the vector and scalar modes, and
the cumulative SNR is highest when the model chosen for recovery matches the
injected polarization.
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Figure 8: Narrowband point estimate and sensitivity for an injected tensor
(top), vector (middle), and scalar (bottom) signal with Q,,(f) = 2 x 1077
recovered assuming tensor (blue), vector (red) and scalar (green) models inde-
pendently. The dashed black line shows the expected signal. The peaks in both
distributions are due to the zeros of the overlap reduction functions.
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4 O1 Search

After verifying the validity of the single-polarization search with simulations,
the aLIGO O1 data was analyzed using the same analysis methods. The data
was divided into half-overlapping 192 sec intervals and down sampled to 4096
Hz. A Hann window and high-pass filter are applied to each segment, and the
data is then coarse-grained to a frequency of 1/32 Hz. The data used in this
analysis was selected such that both detectors were in low-noise science mode,
so certain segments were cut based on known non-stationarity effects. The
total observation time after applying these cuts is 28.5 days. Data quality cuts
are also applied in the frequency domain for frequencies with large noise power
spectra usually due to instrumental effects [16]. As a further test of the modified
search pipeline, the analysis was run for a tensor signal, and the results matched
those of the official LIGO stochastic isotropic search to within a few percent.
This minor discrepancy is likely due to slight differences in the methods used to
combine broadband ¢ while post-processing the data. Finally, before running
the unblinded search for vector and scalar modes, we ran this same search but
introduced a 1 sec time shift in one of the detector data streams, effectively
removing any potential correlations of astrophysical origin, but maintaining
instrumental correlations.

The unblinded scalar results are shown in Figures 12 and 14, and the vector
results in Figures 13 and 15.

5 Model Selection

5.1 Signal to Noise Ratio

While the above analysis allowed us to search for a signal of a single po-
larization, generic backgrounds may be composed of multiple polarizations si-
multaneously. The definitions of the point estimate and the sensitivity must
be adjusted for such a mixed-polarization signal. Converting the integrals in
Equations 20 and 25 to sums over frequency gives

f(;[roz Z gt gw Q) df, (35)
= §ZQ2(f)P1(f)P2(f)df7 (36)

14



10— 71— 0T

m
> 15
2 in
1] -
=) [= .
o [0
[+ 0
2 =l
@ ] 8
: : =
— Tensor
— Vector
: : — Scalar : : : : :
-8 ] ] | 1 1 1 -8 ] ] ] ] ] I
VWo™1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7
Total Observation Time [hr] Total Observation Time [hr]
4 T T T T T
3_ -
o ]
a 1 =«
=
U>J wn
2 ] e =
T 2
= = .
E 1 3
2 =
5 | ]
= N
_2_ 4
-3 i i I i i i 0 i i i i i I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Total Observation Time [hr] Total Observation Time [hr]

Figure 9: Cumulative broadband point estimate and sensitivity as a function
of total observation time for an injected tensor signal with Qg (f) =2 x 1077
recovered assuming tensor (blue), vector (red) and scalar (green) models inde-
pendently. The vector and scalar sensitivities overlap. While the point estimate
is highest for recovery with the vector model, both the segment-by-segement
and cumulative SNRs are greater when recovering the signal with the tensor
polarization. The mean segment-by-segment SNR is given by the horizontal
lines for each polarization in the lower left plot.
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Figure 10: Cumulative broadband point estimate and sensitivity as a function
of total observation time for an injected vector signal with Qg,,(f) =2 x 1077
recovered assuming tensor (blue), vector (red) and scalar (green) models in-
dependently. The vector and scalar sensitivities overlap, while the cumulative
SNR assuming a vector model on recovery exceeds that of the tensor model only
at the end of the observing period.
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Figure 11: Cumulative broadband point estimate and sensitivity as a function
of total observation time for an injected scalar signal with Qg,,(f) =2 x 1077
recovered assuming tensor (blue), vector (red) and scalar (green) models inde-
pendently. The sensitivities and average segment-by-segment SNR overlap for
the vector and scalar recovery models.
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where we have multiplied by a factor of 2 to account for summing only over pos-
itive frequencies, and we have again taken (). to include all polarizations:

V() = QYT + QY + €00, (37)

The broadband values p and o are computed from the narrowband values Y(f)
and o(f) following

s

_ Z;(ng(f)(f)’ o2 = Z 0,72(‘]0), (38)

so the expression for SNR? is equivalently given by

3H, y(f HAW)
SNR? = 1 - [wszZ df} (39)
o? T Qx(NHP (f)Pz(f)df 7
and
Y(f)o=2 2

s (S o B

Setting the numerators and~denominators of Equations 41 and 42 equal to each
other and then solving for Q(f) such that Y'(f) = v(f)Qquw(f) gives

~ 3H? ) 2
= . 41
a0 = (1) e “
The expression for SNR? then simplifies to
f)qu f)

) 3H2\? {Z fﬁPl(f)Pz(f)df
SNR :(10 2) 2T (42)

T X PR P

However, since the background is not necessarily flat in each frequency bin,
the signal must be weighted by the model assumed on recovery, vas(f)Qar(f),
which is also a sum of the overlap reduction functions and contributions from
each polarization as in Equation 39 [14]. The expression for SNR? is now

FoP(f) P2 (f)

Z (v (F)Qm ()2
FOPL(f)P2(f)df

[Z Y (P01 (1) 01 (f df

2 2
SNR? = (3H0> oT

1072 (43)

which simplifies to the expression for the optimal SNR when the model matches
the signal, s (f) Q1 (f) = 7(f)Qgu (f):

o (3HZ\? (Y(F)Qqu(f))?
SNR = (ww?) DN TG (44)
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Recover Tensor | Recover Vector | Recover Scalar
Inject 18.56 15.72 14.55
Tensor 18.90 16.76 14.00
Inject 12.88 12.89 12.10
Vector 12.58 14.19 13.73
Inject 10.70 13.53 14.84
Scalar 10.30 13.5 13.91

Table 1: Predicted (top) and calculated (bottom) SNR values for the signals
injected in Section 3.2. The horizontal axis indicates the model assumed when
recovering the signal, while the vertical axis indicates the type of signal that
was injected. The SNR is highest for both the prediction and the calculation
when the model and the injected signal match, as indicated by the optimal SNR
expression in Equation 46.

The SNR values predicted using Equation 45 for the signals injected in Section
3.2 are given in Table 1 in comparison to the values calculated from the data
(following Equation 36). As indicated by the optimal SNR, expression above,
the maximum SNR for both the prediction and the calculation occurs when the
injected signal and model match.

5.2 Component Separation

Using different models to maximize the SNR defined in the last section is
one way to determine contributions from individual polarizations to a recorded
signal. The same component separation goal can also be achieved using the
Fisher information matrix for a system with at least three detectors (unlike
aLIGO). For a given detector pair 8, we define the following quantities:

Yo(F) = 255, (F)3s () (45)
Now (£, 1') = (V5 (FW¥s() — (5 (DY) (16)

Y3(f) is the cross-correlation statistic for the baseline 5 and Ngg/(f, f') is a
diagonal matrix whose elements are the products of the noise power spectrum
densities of the two detectors in the given baseline. The likelihood function
for the data Y given a model A is a Gaussian assuming that the noise itself
is Gaussian, much louder than the signal, and uncorrelated between the two
detectors [15]:

p(Y]A) xexp[ — (Y — MA)"N"H(Y — MA)] (47)

1
2
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where the matrices M and A are given by

T NV .S
8 Y g
kA (/)
M=1" T |, A=[9Y(],
WO N
for p = 1,2,---, N and where 75‘ is the overlap reduction function for the

polarization A for the detector pair 8. The background amplitudes maximizing
the likelihood are

A=F1X, (48

b

where

F=M'N"M, X =MIN"ty, (49

~~

F' is the Fisher information matrix, whose inverse is the covariance matrix for
A in the large-SNR limit:

F~t e (AATY — (AV(AT). (50

=

This separation procedure can only be applied to a system with at least three
detector pairs, but it can be modified for a single detector baseline. The matrices
M and A become

YT YT S () o
o | TEET @@ e
QS

Y)Y ) ) (3)°
where the spectral index « is fixed for some reference frequency fy and A rep-

resents just the amplitudes of the different polarizations [14]. Equation 43 can
then be used to solve for A as above.

5.3 Conclusion and Outlook

Il The long term goal is to then construct a component separation scheme
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for the current aLIGO two-detector system and for the three detector system

including the Virgo detector, G
e
L |
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