O2 DARM Loop Design
Comparisons and Critiques

E. Goetgz, J. Kissel, for the Calibration Team
For similar O1 critique, see LIGO-G1501372
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DARM Open Loop Gain TF (Blg Plcture)
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DARM OLGTF (UGF Zoom)
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10%

DARM Open Loop Gain TF

Closed loop gain, 1/(1+G)

Magnitude
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L1 Max Suppression: 1.9

H1 Max Suppression: 1.9

Both have plenty of gain
margin
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orders of magnitude less
suppression around the
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Actuator Strength Comparison

H1 output filter bank to test mass displacement
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Actuator Strength Comparison

L1 output filter bank to test mass displacement
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Actuator Comparison (Hierarchy Filters)

L1 DARM CTRL to output filter bank
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Both sites have a mish-mash of
“offloaded” vs. “distributed”
hierarchy filters due to staggered
design

L1 does more loop shaping in the
DARM bank (because of all the
notching done at H1)

H1 DARM CTRL to output filter bank
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The DARM Filter and Sensing Function

DARM filter
——— .
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L1 Actuator Authority (Big Picture)

L1 LOCK IN to displacement
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L1 Actuator Authority (X-over Zoom)

L1 LOCK IN to displacement
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|1 Actuator Authority (HF Roll-off Zoom)
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H1 Actuator Authority (Big Picture)

H1 LOCK IN to displacement
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H1 Actuator Authority (HF Roll-off Zoom)

H1 LOCK IN to displacement
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Authority Including DARM Filter (scaled by optical gain)

L1 DARM IN to displacement
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Authority Including DARM Filter (scaled by optical gain)
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Conclusions

* H1 DARM Loop has been cleaned up since O1
— FIXED: More boosting at low-frequency
— FIXED: Better / simpler distribution filters
— Less notching?

* Frequency response is splayed out

everywhere at both sites, evident that
“design” was staggered and piecemeal

— Both sites should consider consolidating, for
easier analysis of performance



APPENDIX A: Sensing Function Units
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c1700316.,> This has entirely and only to do with a different choice of digital allocation of gains. 18



APPENDIX A: Sensing Function Units
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APPENDIX A: Sensing Function Units
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APPENDIX A: Sensing Function Units

But from here, they depart from each other soley due to how, historically, the sites were
commissioned in parallel...

OMC DCPD oMC
Balance

DCPD SUM ) DCPD
Matrix

Bypassedfor simplicity in Oct 2013 (see4:HO

aLOG 9100), and never looked back—r Sc
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momeuseRmoss developed in el1GO, 10900023
(re)commissioned for aLIGO in May-July 2015 (see e.g. LHO aLOG 19233, 18470)
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APPENDIX A: Sensing Function Units

The scale factors are geared such that DARM_ERR is

While there were efforts to calibrate
DARM_ERR into displacement units, it all
boils down to whether DARM ERR needed
to originally be in “pm” or “um” and was

in “pm” so the OFFSET in the DARM bank can be the
DARM OFFSET in physical units.

Collectively it’s about 1/ (4.5 [mA/pm]) ~ 0.2
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Normalization 0 b Length -D;FTM_O_ffs_et 9 0 RE@%SUT 126 Humﬂ
~0.048 196 ~0.07 43 ~ .8 707
e b .
~14.2

This gain factor is such that the OMC DCPD error signal matches the AS
AIR, and AS AIR error is matched to ALS DIFF, which was originally

G1700316-v2

(roughly) calibrated in “um”

Scale factor collectively works out to about
le-6 [um/pm]/ (2.7 [mA/pm]) ~ 3.6e-7

In other words, both sites
are normalizing their DARM
loop gain to some reference
time with the optical gain
was ~ 4.5 /2.7 [mA/pm]
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APPENDIX A: Sensing Function Units
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And as we’ve seen on pgs 2, 15 and 16, the open loop gains and
actuation authority are virtually identical, so that gain discrepancy is
made up for in the DARM banks.

G1700316-v2
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EPICS Fain.1400..._.

i _______ I

To ETM SUS Models via IPC \ 4

Side note: as of 02, L1 still hasn’t
split their DARM bank into two,

and that’s shown here
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APPENDIX A: Sensing Function Units

H1DARM_IN1 /OMC_DCPD_SUM Digital TF
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So, if we use this entirely digital
transfer function to

“correct” (namely, undo) the
sensing function from DARM_ERR

counts to mA on the DCPDs, we
get....

G1700316-v2

Magnitude [ct/mA]

Phase [deg]

This explains the difference
between the site’s transfer
function between the OMC DCPD
SUMM (in [mA]) and DARM _IN1
(i..e DARM_ERR in [ct])
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APPENDIX A: Sensing Function Units

2017-01-03 H1 Sensing Function Model
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Side notes:
- the sites also chose different sides the the

guadratic for the DARM offset, so the
phase is 180 different at low frequency.

- Remember L1 doesn’t include any SRC
detuning, because they hadn’t been able
to measure it before 02 (now they have,
see LLO alLOG 32495)
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The modeled optical gain is about ~3.7 [mA /
pm] for both observatories (and remember,
measurement matches our model very well).

BUT, that “mA” is an function of how well
commissioners filled out the DCPD banks —
namely the “V2A” and “HizZ” filter modules
in the OMC DCPD Banks
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APPENDIX A: Sensing Function Units

Conclusions

* On aloglog plot, the two sites have virtually
identical sensing function optical gains in
physical units, as expected.

e The sensing function’s optical gain in the DARM
loop model is necessarily in unphysical units
and very different in scale in order to cover the
choices in digital gain distribution.

* For the purposes of a paper, the sensing
function can be scaled from the model’s
unphysical units to physical units using the
transfer function between

LSC-DARM IN1 DQ / OMC-DCPD SUM OUT DQ

e But, if we want traceable accuracy and
precision, we should be sure to understand how
the digital filters in the DCPD banks were
populated.
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