LIGO: the Dawn of Gravitational Wave Astronomy

Jameson Graef Rollins

LIGO Laboratory California Institute of Technology

> PCaPAC 2016 Campinas, Brazil October 26, 2016

Albert Einstein was a smart guy

Albert Einstein was a smart guy

Why? (partially) because of...

General Relativity: gravity is curved spacetime

"Mass tells spacetime how to curve, spacetime tells mass how to move."

- J. Wheeler

 $curvature of = ~10^{-43}$

massenergy content

GR predicts gravitational waves: ripples in spacetime

GW produced by accelerating asymmetric mass distributions

1993 Nobel Prize in Physics: pulsar in binary system

Russell Hulse and Joseph Taylor (decay measurement with J. Weisberg)

Joseph Weber: pioneer of GW experiment

Weber built the first ever gravitational wave detectors in the 1960s.

resonant mass detector

Designed to ring like a bell when struck by a gravitational wave.

He thought he detected something (but probably didn't).

In 1970s a new detection paradigm was conceived

Rainer Weiss (MIT) Kipp Thorne, Ronald Drever, Rochus Voigt (Caltech)

Examine effect GW have on spacetime

Gravitational waves cause a peculiar motion of spacetime as they pass:

differential strain

$$h = \frac{\Delta L}{L}$$

x stretches while y contracts, and vice versa.

Test masses placed on the ring will move with the spacetime.

Use light to measure the strain: Michelson interferometer

Michelson interferometer gives direct measure of strain

If the Michelson end mirrors rest on ring they *directly measure* the strain of the passing gravitational wave.

Prototype interferometric detectors where built

MIT 1.5m prototype

Caltech 40m prototype

After much research, simple Michelson concept...

...evolved into something much more sensitive

Laser Interferometer Gravitational-wave Observatory

Hanford, WA (LHO)

Livingston, LA (LLO)

Laser Interferometer Gravitational-wave Observatory

Very large ultra-high vacuum enclosure

Seven stages of active seismic isolation

Seismic isolation platform

Large test masses and monolithic suspensions

Large test masses and monolithic suspensions

High power pre-stabilized laser source

Readout optics and electronics

End test mass chamber assembly

Fully digital controls

LIGO employs a hierarchical control structure for the full detector.

Feedback loops control all degrees of freedom (DOF) at the microscopic level with a custom built, modular, distributed, real-time digital control system (RTS) (using off the shelf PCs and a small linux kernel patch).

Fully digital controls

Hundreds of feedback loops:

suspensions active damping of 3-24 DOF per suspension (×18)
seismic isolation active damping and isolation of 18 DOF per seismic platform (×9)

global control 5 length and 10 angular global DOF

Fully digital controls

Supervisory control (automation) handled by a hierarchical, modular, distributed, state machine platform called Guardian.

LIGO measurement as a function of frequency

Performance: displacement sensitivity

How small *is* that?!

Ultimately limited by fundamental noise sources

What does it sound like? Noise!

Meanwhile... 1.3 billion years ago, *in a galaxy* far, far away....

A pair of orbiting black holes inspiral and merge...

...and emit a *lot* of gravitational waves

Back on Earth, September 14, 2015...

Observation of Gravitational Waves from a Binary Black Hole Merger

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitationalwave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole.

GW150914 - Observed strain

And then again on Christmas Day 2015

All events from the first observing run (O1)

GW150914 by the numbers

collision was 1.3 *billion* light years away 1/10th distance to edge of observable Universe

 $\begin{array}{rcl} BH_1 & + & BH_2 & \Rightarrow & BH_f \\ 36.2 \ M_{\odot} & + & 29.1 \ M_{\odot} & \Rightarrow & 62.3 \ M_{\odot} & \ref{eq:matrix} \end{array}$

3 suns worth of energy released as gravitational waves

 $\begin{array}{rll} {\rm peak\ luminosity:} & {\bf 3.6}\times {\bf 10^{56}} & {\rm ergs/s} \\ {\rm solar\ luminosity:} & {\bf 3.8}\times {\bf 10^{33}} & {\rm ergs/s} \\ {\rm universe\ luminosity:} & \sim {\bf 10^{55}} & {\rm ergs/s} \\ \end{array}$

 $30 \times$ brighter than the entire Universe

All known black holes

Where in the sky did they come from it?

Where in the sky did they come from it?

This is what a binary black hole merger actually *looks* like

But a binary neutron star merger...

Or a core-collapse supernova...

World-wide network needed for better sky localization

The future of LIGO

LIGO currently down for improvements, prepping for late 2016 observing run start (hoping for $\sim 20\%$ sensitivity improvement).

At design sensitivity: expect multiple events per week

More big discoveries soon?

- binary neutron star collisions?
- electromagnetic counterparts?

<mark> ???</mark>

Future of gravitational wave detection

New and improved detectors needed

quantum noise

more laser power squeezed vacuum

thermal noise

better mirror coatingscryogenics

seismic noise

longer suspensions, more stagesseismic feed-forward cancellation

everything else longer arms

 $\begin{array}{c} \text{4th generation detectors can potentially have} \\ cosmological \ \text{reach} \end{array}$

GW should exist across a large spectrum

Thank you