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LIGO Known Stellar-Mass Black
Holes — June 2016 //@}/\ARGD
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LIGO
Now what? MOINIRGD

® These first observations open up access to a vast
new frontier for exploration

® Initial observations indicate that stellar-mass or

“heavy” black hole binaries merge hourly somewhere
in the universe

® What can these mergers teach us?

How and where have these objects been formed?

® Where is the matter?

» No “known” form of matter can explain LIGO’s early discoveries,
and they behave like black holes.

» (Can we prove that these objects are black holes?
» Where are the neutron stars and how do they behave?

LIGO-G1602006 Raab - Exploring the New Frontier of GW Astronomy 3



LIGO

Multi-Messenger Astronomy //@}} VIRGD

® These first observations of dynamic extreme
spacetimes show us that GR is reasonably accurate
in this regime and can be used as a tool for
examining and interpreting extreme states of matter.

® There are a rich collection of sources still to be
examined!
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LIGO  Astrophysical Sources of \/RGD

Gravitational Waves

Coalescing_ Asymmetric Core
Compact Binary Collapse

Systems: Neutron
Star-NS, Black
Hole-NS, BH-BH

Supernovae

- Weak emitters,

- Strong emitters, not well-modeled

well-modeled, (‘bursts’), transient

- (eﬂ‘ectively) Credit: Chandra X-ray Observatory
transient

Credit: AEI, CCT, LSU

Cosmic Gravitational-
wave Background

- Residue of the Big
Bang

- Long duration,
stochastic background

Spinning neutron
stars

- (nearly) monotonic
waveform

- Long duration
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NASA/WMAP Science Team

Casey Reed, Penn State
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The rate of future discovery in gravitational-
wave astronomy will be determined by the
number and sensitivity of gravitational-wave
detectors and the number and skill of GW
experimentalists.
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LIGO Building Out the Terrestrial
Gravitational-Wave Network

® A greater number of detector facilities around the
world improves:
» SKy localization
» Polarization information
» CBC orbital inclination
» CBC Distance information
» CBC precession information
» Network robustness

LIGO-G1602006 Raab - Exploring the New Frontier of GW Astronomy 9



LIGO Sky Localization Is Poor
With Only Two Detectors

IDINVRG

LVT151012

GW151226

GW150914

Image credit: LIGO (Leo Singer) /Milky Way image (Axel Mellinger)
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The advanced GW detector network:
2015-2025

Advanced LIGO _ GEO600 (HF)
Hanford e - 22011 spe=--

Advanced LIGO 8
Livingston Advanced

i /e Virgo
2015 TR 2017




GO
LIGO-India Concept  1PVIRGD

@ Started as a partnership between LIGO Laboratory
and IndlGO collaboration to build an Indian
interferometer

» LIGO Lab (with its UK, German and Australian partners) provides
components for one Advanced LIGO interferometer (H2) from the
Advanced LIGO project

» LIGO Lab provides designs and design assistance for facilities and
vacuum system and training for Indian detector team

» India provides the infrastructure (site, roads, building, vacuum
system), staff for installation & commissioning, operating costs

® LIGO-India would be operated as part of LIGO Global
Network to maximize scientific impact

® Major enhancement to the global network and to the
capabilities for GW astrophysics and Multi-
messenger Astronomy
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LIGO

LIGO Effect of Addlng LIGO-India (D) scionirie
to the LIGO+Virgo Network '\

Red crosses denote

regions where the Fairhurst 201 |

Fairhurst 2011 network has blind spots

LIGO+Virgo only With LIGO-India
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LIGO Improved Localization:
LIGO->Virgo>LIGO-India

GW150914: LIGO - LV - LVI
(Preliminary)

IDINVRG

GW150914: LIGO only

(99% cori idence Ievel)

Oh
LSC/Virgo et al. 2016, ApJL
arXiv:1602.08492

LSC/Virgo, L. Singer, S. Gaebel
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Determined by Noise and M2JIVIRD
Background

LIGO Sensitivity of Detectors is

® The key to improving detectors is sensitivity which
Improved by reducing noise and background.

® Range is proportional to sensitivity.

® Event rate is proportional to volume, which is
proportional to range cubed.

® Thus a factor of 2 in sensitivity gives a factor of 8 in
event rate (nearly an order of magnitude).
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LIGO Noise and background
cartoon
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LIGO LVC Observing Scenario S
(arXiv:1304.0670) MOV

. Advanced LIGO - Advanced Virgo
10 B Early (2015, 40 — 80 Mpc) 10 B Early (2016-17, 20 — 60 Mpc) |
. Mid (2016-17, 80 — 120 Mpc) . Mid (2017-18, 60 — 85 Mpc) |
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates

and sensitivity curves are subject to change, the overall progression represents our best current
estimates.



LIGO Initial S6 / Advanced O1 [EB:w-
Design / A+ Upgrade  @JIVIRGD

; https://dcc.ligo.org/LIGO-G1500623
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LIGO Science drives //}\/IRGD

Requirements

e Stellar Evolution at High Red-Shift: Black Holes from
the first stars (Population lil)
» Reach z>~10
» At least moderate GW luminosity distance precision

o Independent Cosmology and the Dark Energy Equation
of State

» Needs precision GW luminosity distance and localization for EM
follow-ups (for redshift)

® Checking GR in extreme regime
» High SNR needed
» QW luminosity distance and localization not essential
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LIGO What will it take to improve //}\/RGD
detectors?

@ Clever experimental physicists and engineers, capable of
solving multi-dimensional problems at the forefront of basic
measurement science

® Advanced LIGO detectors are complex:

» Approximately 350 high-performance servomechanisms
» Many of these are multiple-input, multiple output

» Sensors and actuators for these are operating at or beyond
commercial limits

® Developing ways to work around fundamental limitations:
»  Quantum nature of light
» Atomic nature of matter

® A single example: working around the classical and quantum
nature of light
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Nothing Is Easy: Classical //}\/ R
Challenges to High-Power Operation

LIGO

Thermal lensing and

compensation Angular radiation pressure
Reiaging instabilities Parametric instabilities

(a) symmetric yaw

Transmissive Opti
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Therme 1|
XCite \0{
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Radiation
Pressure

_ _ - M Evans et al (2015) Phys. Rev.
J Sidles, D Sigg, Phys. Lett. A. Lett. 114, 161102

R Lawrence ef al (2004) 354, 167-172 (2006)
Opt Lett 29(22)2635-2637

Aluminum Shiéldins
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LIGO Quantum Noise is Fundamental,  2)))\/|RGD

Caused by Vacuum Fluctuations

EM Vacuum Fluctuations
Cause Shot Noise and
Radiation Pressure Noise

T_I
£,
\C

v

v C Caves (1981) Phys. Rev. D 23, 1693
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LIGO V m Zing: Scierifie
actim squeezing. a — /eviRe
partial work-around
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LIGO A better work-around: frequency- /{@}}\/lRGD
dependent squeezing

® Original idea: J Kimble et al
(2001) Phys. Rev. D 65, 022002

® Practical designs: T Corbitt et al
(2004) Phys. Rev. D 70, 022002

® Demonstration in regime
applicable to LIGO: E Oelker et al

Interferometer

Squeezer : Filter cavity

(2016) Phys. Rev. Lett. 116,
B"{I 041102

v Detection

M Evans et al, (2013) PRD 88 022002
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LIGO Advanced LIGO TOINVIRCS
upgrade path

® Advanced LIGO is limited by
gquantum noise & coating thermal noise

® Sgueezed vacuum to reduce quantum noise

® Options for thermal noise:
» Better coatings
» Cryogenic operation
» Longer arms (new facility)
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Strain (1/v/Ha)
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Upgrade possibilities  12)JVIRGD

https://dcc.ligo.org/public/0113/T1400316/004; www.et-gw.eu
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The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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Holes in galactic nuclei
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Summary

e 1stobserving run of LIGO’s 2"d-generation detectors have
initiated Gravitational-Wave Astronomy, opening a vast new
frontier for exploration.

® An emerging international network of detectors soon will provide
more accurate positions of sources to enable EM follow-ups of
GW events.

® There is still room within the laws of physics to develop more
powerful generations of detectors and much physics still to be
harvested from their observations.
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Extra slides
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LIGO Discovery Timeline — Advanced 77>
LIGO’s 15t Observations IRV

September 14,2015  October 12, 2015 ecember 26, 2015
CONFIRMED CANDIDATE CONFIRMED
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September 2015 Oct b 2015 November 2015 December 2015 January 2016
Courtesy Caltech/MIT/LIGO Laboratory
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LIGO Advanced LIGQ S First //\/RGD
Observations

ArViv:1606.04856; see also PRL 116, 241103 (2016) for GW151226.
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Principal noise terms
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