

ADVANCED LIGO FIRST LIGHT

MULTIMESSENGER ASTROPHYSICS IN THE AGE OF GRAVITATIONAL WAVE OBSERVATORIES

TeVPA 2016

CERN, Geneva, 2016-09-15 LIGO-G1601933-v1 LEO P. SINGER / NASA Postdoctoral Fellow

NASA Goddard Space Flight Center leo.p.singer@nasa.gov

A global network of grav. wave observatories

- LIGO: Laser Interferometer Gravitational-wave Observatory
- Senses fractional arm displacements (strain) of 10⁻²¹
 - \rightarrow changes in length of $\sim 2 \times 10^{-16}$ cm
 - =1/500 of charge radius of proton
 - → like measuring distance to Proxima Centauri to the width of a human hair
- A tour de force of precision measurement:

40 kg "test masses" suspended from from fused silica fibers, multi-stage pendula, active seismic isolation

20 W laser power → 100 kW circulating in arm cavities

Thermal deformation of mirrors must be compensated by ring heaters and CO₂ lasers

Credit: LIGO/Caltech

Sky location and distance

The future is bright!

Understanding the full astrophysical richness of compact binaries will take not just LIGO, but the broad astronomy community across many wavelengths!

- EM counterparts of LIGO sources
- Central engine vs. external fireball and ejecta
- Pinpoint host galaxy, determine formation environment
- Standard sirens: Calibrationfree rung on cosmological distance ladder
- Explain cosmic abundance of heavy elements – "bling nova"
- Explain nature of short GRBs
- ...and (uh oh): challenge whether stellar BBHs are truly barren of matter!

DIGGING UP FOSSILS OF NEUTRON STAR MERGERS in our own backyard

Ultra-faint dwarf galaxy Reticulum II discovered by Dark Energy Survey, has 2–3 orders of magnitude higher abundances of *r*-process elements than other MW satellites → evidence for *a single r-process enrichment event*

TO FIND NEUTRON STAR MERGERS, look no further than the sea

- Concentration of ²⁴⁴Pu in deep-sea sedimentary rock
- Half-life = 85 My, so no active contribution from solar system
- Lower concentration than expected for r-process dominated by supernovae (Wallner+ 2015)
- Low-rate, high-yield process preferred over high-rate, low-yield process → NS binaries (Hotokezaka+ 2015)

Wallner+ 2015

LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE

TRANSIENT GW150914

ApJL, 826, L13 arXiv:1602.08492

LOCALIZATION AND BROADBAND FOLLOW-UP OF THE

OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914

ApJL, 826, L13 arXiv:1602.08492

LOCALIZATION AND BROADBAND FOLLOW-UP

OF THE
GRAVITATIONAL-WAVE
TRANSIENT GW150914

25 observing teams (+LIGO, Virgo), 1551 authors

unprecedented: broke ApJL author portal!

ASKAP, LOFAR, MWA, Fermi/GBM, Fermi/LAT, INTEGRAL, IPN, Swift, MAXI, BOOTES, MASTER, Pi of the Sky, DES/DECam, INAF/GRAWITA, iPTF, J-GEM/KWFC, La Silla-QUEST, Liverpool Telescope, PESSTO, Pan-STARRS, SkyMapper, TAROT, Zadko, TOROS, VISTA

SELECTED HIGHLIGHTS from **O1** localization + follow-up campaign

- Prompt, accurate localization of the first LIGO signal (although LIGO/Virgo alert sent two days late)
- Possible γ-ray transient (Fermi GBM, though not seen by INTEGRAL SPI-ACS)
 Connaughton+ 2016, Savchenko+ 2016
- Follow-up of nearby galaxies with Swift XRT Evans, Kennea, Barthelmey+ 2016
- DECam search for failed missing supergiants/failed SN in LMC Annis+ 2016
- Keck spectroscopy of iPTF candidates <1 hr after discovery images; superluminous supernova discovered in iPTF follow-up Kasliwal, Cenko, Singer+ 2016
- DECam (Soares-Santos+), AGILE (Tavani+), XMM (Troja+), Fermi LAT (LAT Collab.), Pan-STARRS/PESSTO (Smartt+), Subara+HSC

GW FOLLOW-UP WITH LARGE SYNOPTIC SURVEY INSTRUMENTS

Soares-Santos+ 2016

Deep, wide-field follow-up with DECam to i=22.5

Annis+ 2016

DECam search for missing supergiants in LMC

Smartt+ 2016

Kasliwal, Cenko, Singer+ 2016

iPTF optical transient search + Keck classification spectra <1 hour after discovery, plus a serendipitous superluminous supernova

JOINT **GW- HIGH ENERGY**SEARCHES

- Strong indirect evidence that NS binary mergers power most or all short, hard GRBs (Paczynski, Eichler, Narayan, Rezzolla, Fong, etc.)
- GW or GRB threshold can be lowered due to reduction in trials from assuming know time, inclination, and sky location
- Three kinds of joint GW-HE searches:
 - 1. Coincidence between GW candidates and GRB (see A. Urban Ph.D thesis)
 - Sub-threshold targeted searches of GW data triggered by GRB (notable example: GRB 051103, LVC+ 2012)
 - 3. Sub-threshold targeted searches of gamma-ray data triggered by LIGO (see <u>Blackburn 2014</u>)
- Notable synergies with: Fermi, Swift, INTEGRAL, IPN, MAXI

image: GRB 051103, <u>LVC+ 2012</u>

GW150914 *Fermi* GBM candidate

- Faint coincident gamma-ray transient present in *Fermi* Gamma-ray Burst Monitor (GBM) 0.4s after GW150914 (Connaughton+2016), estimated false alarm probability of 0.002 (2.9σ)
- Unclear if astrophysical (<u>Connaughton+</u> 2016, <u>Greiner+ 2016</u>), not seen by INTEGRAL (<u>Savchenko+ 2016</u>) or AGILE (<u>Tavani+ 2016</u>)
- If astrophysical, would constitute a novel
 GRB mechanism because EM emission is not
 expected a priori from stellar-mass BBH
 mergers
- Some exotic scenarios proposed (<u>Loeb 2016</u>, <u>Perna+ 2016</u>, etc.)

image: Connaughton+ 2016

 LIGO/Virgo pipelines must and will be able to produce rapid alerts for BBHs going forward

WHERE WE WILL GO IN 02

Based on GW150914 alone. LVC 2016, PRL, <u>arXiv:1602.03842</u>

Based on all O1 events. LVC 2016, <u>arXiv:1606.04856</u>

WHERE WE WILL GO IN 02

- Based on O1:
 ~10 BBHs by O2, ~100 by O3 (!!)
- Both distinctive single-object analysis and population statistics
 - → History of stellar BH masses and spins through cosmic time
- Even more exciting: more highly asymmetric masses, spin precession, binary neutron star and neutron star-black hole mergers
- An alert every 1-2 weeks
 - → Alerts with **distance and GW classification** must go out within half an hour (~1 minute, with more practice!)

Based on all O1 events. LVC 2016, <u>arXiv:1606.04856</u>

PARADIGM SHIFT with Advanced Virgo

Even with at "early" sensitivity, Advanced Virgo will **fundamentally transform** the character of GW observations.

Area (deg²)	GW 150914	NSBH	NSNS	
HL	400	300	200	
HLV	11	11	5	
HLI	6	7	4	

PARADIGM SHIFT with Advanced Virgo

Even with at "early" sensitivity, Advanced Virgo will **fundamentally transform** the character of GW observations.

Area (deg²)	GW 150914	NSBH	NSNS	
HL	400	300	200	
HLV	11	11	5	
HLI	6	7	4	

PARADIGM SHIFT with Advanced Virgo

Even with at "early" sensitivity, Advanced Virgo will **fundamentally transform** the character of GW observations.

Area (deg²)	GW 150914	NSBH	NSNS	
HL	400	300	200	
HLV	11	11	5	
HLI	6	7	4	

We anticipate **neutron star binary** detections or astrophysically interesting rate constraints by O2/O3.

We expect routine O(10-100) deg2 or less once Advanced Virgo ramps up (maybe as early as late O2).

Epoch		2015-2016	2016 - 2017	2017 - 2018	2019+	2022+ (India)	
Estimated run duration		4 months	6 months	9 months	(per year)	(per year)	
Burst range/Mpc LIGO Virgo		40-60	$60-75 \\ 20-40$	75 - 90 $40 - 50$	$105 \\ 40 - 80$	105 80	
${ m BNS \ range/Mpc} \qquad { m LIGO \ Virgo} \ \ $		40-80	80-120 $20-60$	120 - 170 $60 - 85$	$200 \\ 65 - 115$	200 130	
Estimated BNS detections		0.0005-4	0.006 - 20	0.04 - 100	0.2 - 200	0.4 - 400	
90% CR	% within median	$\begin{array}{c} 5 \ \deg^2 \\ 20 \ \deg^2 \\ / \deg^2 \end{array}$	< 1 < 1 480	$2\\14\\230$	> 1-2 > 10 —	> 3-8 > 8-30 —	> 20 > 50 —
searched area	% within median	$\begin{array}{c} 5 \ \deg^2 \\ 20 \ \deg^2 \\ / \deg^2 \end{array}$	6 16 88	20 44 29	——————————————————————————————————————	— — —	

SCIENCE OUTREACH

How to get started with LIGO/Virgo alerts

Singer+ 2014 (<u>arXiv:1404.5623</u>) Berry+ 2015 (<u>arXiv:1411.6934</u>) Essick+ 2015 (<u>arXiv:1409.2435</u>) LVC+ 2016 (<u>arXiv:1304.0670</u>)

- Minimize surprise by reusing technologies with heritage: GCN, FITS, HEALPix
- Rich sample catalogs, modern and simple toolchain (<u>Astropy</u>, <u>Healpy</u>, <u>PyGCN</u>)
- Sample code, tutorials, and more

Conclusions

- LIGO discovery firehose: expect O(10) GW signals by end of 2016, O(100) by end of 2017
- NS binary mergers are likely around the corner:
 O(0.1–10) events possible in O2
- Wealth of information can be learned from joint GW +broadband EM observations
- Currently ramping up for O2: contact us to learn about joint GW-EM observing opportunities and MOUs

HOW TO GET INVOLVED IN LIGO/VIRGO FOLLOW-UP

EM alerts during proprietary period (O1/O2)

http://www.ligo.org/scientists/GWEMalerts.php

For inquiries

emf@ligo.org, L. Singer, P. Shawhan, M. Branchesi

Tutorials and technical info

https://gw-astronomy.org/wiki/LV_EM/TechInfo

LIGO open data (including sky maps)

https://losc.ligo.org/