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Control system
In Gravitational Wave Detectors




Introduction ~ Control?

Gravitational wave detection
Laser displacement sensor
Requires linear displacement detection

Control for measurement
Laser interferometer = nonlinear device
Feedback control => linearization



Introduction ~ Control?

What is the feedback control?

A scheme to monitor and modify output(s) of a system by
changing the input(s) depending on the output(s)

Examples
Shower temperature Air conditioning
Car driving Bike riding
Tight rope walking Inverted bar on a hand

Imagine what happens

If the response is too slow?

If the response is too fast?



Introduction ~ Control?

Block diagram: Elements of a feedback loop

Stabilized m or m/Hz/?

motion
m or m/Hz*/? o)
Disturbancey A Error
_:[> - H ©  signal
Sensor V or V/HZ:"/:'
V/m v
Actuator Servo
- _ VIV
Feedback
signal ©

V or V/Hz/3 Transducer Filter




Introduction ~ Control?

Sensor:
Transducer for displacement-to-voltage conversion
If the sensor is completely linear

(and has or no frequency dependence)

We don’t need feedback control!




Introduction ~ Control?

In reality:

Sensors, laser interferometers in particular, are nonlinear!
Vv Vv
2?7V =H x?7? V =Hx

Enclose the operating point in the linear region
=>The system recovers linearity

Was the displacement modified by the feedback?
=> Precise knowledge of the control system

for signal reconstruction




Introduction ~ Control?

Elements of a feedback loop

disturbance dXs stabilized disturbance

~ Ve .
error signal

servo filter

Open loop transfer function

dXo _T > H l
actuator sensor
A F
feedback
signal Vfbo‘
dx, = dx - G dx, r
= dXS =dx / (1+G)
= dx = Verr (1+G) / H -

)

def

G=HFA
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= When G is small:
disturbance dXS stabilized disturbance

dXo _T > H

>0 Verr

ignal

Open loop transfer function

= dx, = dx / (1§6) G=HFA
=dx =V, (146)/H
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dx.= dx/(1+G) = 0.09 dx, 0.01 dx, 0.001 dx

d © H o V...= dx H /(1+G)

Actuator range

Residual error
0.91 dX, VS
0.99 dx, A F | Sensor linear range

0.999 dx T '

O
Filter frequency
Vi, = G/(1+G) /A dx response [ loop

= 0.91 dx/A, 0.99 dx/A, 0.999 dx/A stability



Introduction ~ Control?

When the openloop gain G is >>1, the error signal gets
suppressed

“"Wow! our sensor signal became smaller!”

Is our system more sensitive now? => No

Then, can we still measure gravitational waves
even if the error signal is almost zero? => Yes
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Important difference between

“Feedback control for stabilization”
and “Feedback control for measurement”

Feedback control changes the stabilized motion
but reconstructed Disturbance is not modified by the loop*
(*if everything is linear)

Stabilized
motion
Disturbanc H Error
‘ ° signal
ensor
Actuator Servo
A F1 Tilter

Feedback T
signal



Linear systems
and their stability



Linear systems and their stability

A deterministic and time-invariant system: H

System Input s 3 System Output
x(t) H y(t)

The system His LTI (linear & time-invariant) when
yi(t) = H {z:1(t)}
y2(t) = H {z2(t)}
— a1 (t) + By2(t) = H {ax1(t) + Bxa(t)}

We can deal with such a system using Laplace transform
(or almost equivalently Fourier Transform)



Linear systems and their stability

Time domain vs Laplace (or Fourier) frequency domain

Time domain Impulse response
«/

x(t) —»| h(D) » y(t) = h(t)*x(t)
| l lnvIrse
‘Zap/ace ‘Zap/ace
‘Zap/ace

I \ |
X(s) —»| H(s) —» Y(s) = H(s) - X(s)

-]
transfer function

Frequency domain http://en.wikipedia.org/wiki/Linear system
http://en.wikipedia.org/wiki/LTl system theory




Linear systems and their stability

It is easy to convert from an ordinary differential

equation to a transfer function

d:>
— S
dt

— jw = 27 f Fourier Transform

Laplace Transform

e.g. Damped oscillator

X§ Lyl

mi(t) = —ka(t) - 1(t) + P
ms*X(s) = —kX(s) —vsX(s) + F(s) kS|
_ X(s) _ 1
H(S)— F(S) m82—|—’78—|—]€ X¢




Linear systems and their stability

e.g. Damped oscillator

1
H(s) —
(5) ms2 +~vs + k
1 1
H{(s) = m s2 + s 4 w2
0 0
1 1
H{w) = m —w? 4+ 1L w + w?
0 0

=/ k/m, v=mwy/Q

N\

Bode diagram

Iog Iog

Magnitude
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Linear systems and their stability

cut-off freq

e.g. RC filter W = 1/(R*C)

—W '
R
@Zii:e I _ q R ¢ Vout@ °
N N A 3
Vout = q/C 102h
¢=Vin — Vout)/R 1072 10 10’ 10 10°
= iWCVout () = (Via(w) = Vour(@))/R § 120 T
Vour(w) 1 P T—
Vin 1 + iwRC = %ol ‘ ‘ ‘
107 107 10° 10' 10°

Angular Frequency [1/(R*C)]



Linear systems and their stability

In most cases, a system TF can be expressed as:

B bog + b1s + b282 + ...+ b,,8™

ap +a1s + ass? + ... +a,s"
The roots of the numerator are called as “zeros”

H(s)

and the roots of the denominator are called as “poles”
b, H:’il(s — S2i)

An, H?:l(s — Spj)

Zeros (s,;) and poles (s;) are

H(s) =

real numbers (single zeros/poles)
or
pairs of complex conjugates (complex zeros/poles)



Linear systems and their stability

Poles rule the stability of the system!
H(s) can be rewritten as

H(s) = J
; (s — Spj)
Each term imposes exponential time impulse response
1
T.F.: H;(s) = < LR.: h;(t) = 7!
S — Spj

Therefore, if there is ANY pole with Re(s,,;) > 0
the response of the system diverges



Linear systems and their stability

Poles rule the stability of the system!

Unstable
response

Re(s)

Figure 12: Root locus for differentarrangements of the eigen vaiues

http://nupet.daelt.ct.utfpr.edu.br/ ontomos/paginas/AMESim¢4.2.0/demo/Misc/la/SecondOrder/SecondOrder.htm




Linear systems and their stability

Now we eventually came back to this diagram

dx. = dx/(1+G)
d
b—.D‘T‘ H l o Open loop TF:

G=HFA

A F Closed loop TF:
GCL — 1/(1+G)

o \

Requirement: (I)
All the roots for 1+G should be ]
in the left hand side of Laplace plane




Linear systems and their stability

Remarks

Requirement:

All the roots for 1+G should be in the left hand side of Laplace plane

This does not mean all H, F, A needs to be stable.
e.g. Unstable mechanical system A can be stabilized by
a control loop. (cf. An inverted Rod)

Open loop TF:

We usually play with F to tune the result. G=HFA

It is awkward to evaluate the stability

of 1/(2+G) every time. Closed loop TF

There is a way to tell the stability only from G G =1/(1+G)

Nyquist’s stability criterion



Linear systems and their stability
Nyquist stability criterion

Plot openloop gain G in a complex plane (i.e. Nyquist diagram)

If the locus of G(f) from f=0 to oo, goes to o looking at the point (-1 + 01i)

at the left side => Stable

If the locus sees the point (-1+0 i) at the right side => Unstable

N Im

Unstable

(A L

- L Stable

Unity gain frequency fr:

Phase margin 3J:
Gain margin g:

Alm

|Gl=1

1/ [ \ \;f
for [G(fuee) = 2

9 = Arg(G(fycr))
g =1/|G(f,)] where Arg(G(f,)) =-m




Linear systems and their stability
Phase Margin / Gain Margin in Bode diagram

Most of the case, a bode diagram of G is enough to see the stability

) Input MC Openloop TF: UGF 176kHz, P.M. 48deg, G.M.@420kHz 4.3dB

Nearly

| unstable

A rough standard of
a stable servo loop:

Phase Margin > 40deg
Gain Margin > 10dB

10° &+
10' L. 7%
3 10° & :
2 E Y :
2 o Unity Gain Freq / I ‘\ _
="  (a76kHz) Gain Margin
ol 4.3dB@420kH
: + Measured Openloop TF|
"I —— Modelled Openloop TF | ‘ ‘
10° 10° 10°
180F— — x
S 120} _
S 60f Phase Margin
T —120k s L4 e S \
R T
Frequency [Hz] '18°deg




Linear systems and their stability

Building blocks (“zpk” representation)

Single pole
H(S):Sipsp (sp € R, s, >0)
Single zero
H(S):S+Sz (s, € R, s, > 0)
A pair of complex poslzs )
H(s) = °P%p (s, € C, R(s,) > 0)

(5 +sp)(s+ 5;)
A pair of complex zeros

H(s) = B30T S%) ey > 0)

S.S%

Gain
H(s)=K (K €R)



Linear systems and their stability

Relationship between pole/zero locations and wo&Q

T2+ 2R(sp)s + |y
To be compared with

W

—w? +iwow/Q + wj

’529‘

2R(s,)

H(w) =

— wo = |Sp|, @ =




Im(w/w,)

Linear systems and their stability
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Linear systems and their stability

Summary
Classical control theory
Design locations of poles and zeros

Stability: tuning of open loop transfer function is important



Control system components
In GW detectors



Control systems

Elements of a feedback loop (again)

Sensor

Actuator A F Servo

Filter
1




Interferometer control system

Local control vs global control

Mirror Mirror Local
Laser i i Control
Local
Length &> Contro — | _

Sensing

Controllers \ Global control /




Local Sensors

Shadow sensor (relative displacement sensor)

aLIGO: Birmingham Optical Sensor

and Electro-Magnetic actuator (BOSEM) \ N 't""")}agnet
Photodiode (5l N "

1V

L Carbone, Class. Quantum Grav. 29 (2012) 115005

Linear Variable Differential Transducer

Connector

Coil Actuator
LED

(relative disp. sensor) PP fexicircut
. . Lock-in amp Sensor
Optical Lever (relative angular sensor) Output
Laser Mi Probing
Irror coil

[
\

/\/ Local
Oscillator

Quadrant “‘/
Photodiode dx=2Ldo

SUM = A+B+C+D
A-B+C-D

A+R-C-=-D

>
o



Local Sensors

Accelerometers (Inertial sensor)

Piezo Accelerometer Housing

Mass

Charge amp

+++ I:

PIEZO
TRQISDUCER

—
[1111111]

Servo Accelerometer

Fcb Xo
—»(Mm)<——| —

G
I
feedback

control




Local Sensors

Servo Accelerometer (Inertial sensor)

Above the resonant freq: Limited by the sensor noise - 1 N—

Below the resonant freq:

Steep rise of the noise as the mass does not move
in relative to the ground

=> Low resonant freq is beneficial

wE T
10" E
——sensing noise
- - - Brownian noise
— 'K E
=
£ 4L _
= 10 E
Z2 Frame
s 10" E |
Z 0k 1 pm/sqrtHz
© 1 IP Proof mass
10,13_ L el TN Ll
0.01 0.1 1 10
Frequency (Hz)
Fig.7. Equivalent frame displacement noise. Negativel POSiti\
A. Bertolini et al, Nuclear Instruments and Methods in spring Spring

Physics Research A 564 (2006) 579-586



Acutuators

Mechanical actuators

= Coil Magnet actuator =
= Electro Static Driver (ESD)

Photodiode v':j \4

b,

Flag

Coil Actuator
LED

Flexi-circuit

= Piezo (PZT) actuator




v beam v+ fio

\

Incident
beam \ Deflected

| __—V

e
T
. //i Transmitted
Optical actuators Frovesaing p2r
Acousto-Optic Modulator /
Local Oscillator
Electro-Optic Modulator te

Laser Frequency actuator
1. Thermal actuator LiNbO3 crystal
2. Fast piezo actuator

3. External EOM




Analog servo vs digital servo

Comparison of the control room in the analog and digital eras




