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¡ Gravitational wave detection
Laser displacement sensor
Requires linear displacement detection

¡ Control for measurement
Laser interferometer = nonlinear device
Feedback control => linearization



¡ What is the feedback control?

§ A scheme to monitor and modify output(s) of a system by 
changing the input(s) depending on the output(s)

¡ Examples

§ Shower temperature

§ Car driving

§ Tight rope walking

¡ Imagine what happens

§ If the response is too slow?

§ If the response is too fast?

§ Air conditioning

§ Bike riding

§ Inverted bar on a hand



¡ Block diagram: Elements of a feedback loop
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¡ Sensor:
Transducer for displacement-to-voltage conversion

¡ If the sensor is completely linear 
(and has or no frequency dependence)

We don’t need feedback control!

x

V
V = H x



¡ In reality: 
Sensors, laser interferometers in particular, are nonlinear! 

¡ Enclose the operating point in the linear region
=> The system recovers linearity 

¡ Was the displacement modified by the feedback?
=> Precise knowledge of the control system

for signal reconstruction
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¡ Elements of a feedback loop
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¡ When G is small:
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¡ When G is big: e.g. G = 10, 100, or 1000
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¡ When the openloop gain G is >>1, the error signal gets 
suppressed

¡ “Wow! our sensor signal became smaller!”

§ Is our system more sensitive now? => No

§ Then, can we still measure gravitational waves 
even if the error signal is almost zero? => Yes



¡ Important difference between
§ “Feedback control for stabilization” 

and “Feedback control for measurement” 

§ Feedback control changes the stabilized motion
but reconstructed Disturbance is not modified by the loop*
(*if everything is linear)
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¡ A deterministic and time-invariant system: H

¡ The system H is LTI (linear & time-invariant) when

¡ We can deal with such a system using Laplace transform
(or almost equivalently Fourier Transform)

HSystem Input
x(t)

System Output
y(t)

y1(t) = H {x1(t)}
y2(t) = H {x2(t)}

=) ↵y1(t) + �y2(t) = H {↵x1(t) + �x2(t)}



¡ Time domain vs Laplace (or Fourier) frequency domain

http://en.wikipedia.org/wiki/Linear_system
http://en.wikipedia.org/wiki/LTI_system_theory

Impulse response

transfer function



¡ It is easy to convert from an ordinary differential 
equation to a transfer function

¡ e.g. Damped oscillator

d

dt
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¡ e.g. Damped oscillator
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¡ e.g. RC filter
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¡ In most cases, a system TF can be expressed as:

¡ The roots of the numerator are called as “zeros”
and the roots of the denominator are called as “poles”

¡ Zeros (szi) and poles (spi) are 
real numbers (single zeros/poles)

or
pairs of complex conjugates (complex zeros/poles)

H(s) =
b0 + b1s+ b2s

2 + ...+ bmsm

a0 + a1s+ a2s2 + ...+ ansn

H(s) =
bm

Qm
i=1(s� szi)

an
Qn

j=1(s� spj)



¡ Poles rule the stability of the system!
H(s) can be rewritten as

¡ Each term imposes exponential time impulse response

¡ Therefore, if there is ANY pole with
the response of the system diverges

H(s) =
nX

j=1

Kj

(s� spj)

T.F.: Hj(s) =
1

s� spj
() I.R.: hj(t) = espjt



¡ Poles rule the stability of the system!

http://nupet.daelt.ct.utfpr.edu.br/_ontomos/paginas/AMESim4.2.0/demo/Misc/la/SecondOrder/SecondOrder.htm

Re(s)

Im(s) Unstable
response



H

FA

Requirement: 
All the roots for 1+G should be
in the left hand side of Laplace plane

dx
dxs = dx/(1+G)

Open loop TF:
G = H F A

Closed loop TF:
GCL = 1/(1+G)

(!)

¡ Now we eventually came back to this diagram



¡ Remarks
Requirement: 
All the roots for 1+G should be in the left hand side of Laplace plane

§ This does not mean all H, F, A needs to be stable.
e.g. Unstable mechanical system A can be stabilized by
a control loop. (cf. An inverted Rod)

§ We usually play with F to tune the result. 
It is awkward to evaluate the stability
of 1/(1+G) every time.
There is a way to tell the stability only from G

Nyquist’s stability criterion

Open loop TF:
G = H F A

Closed loop TF:
GCL = 1/(1+G)



¡ Nyquist stability criterion
§ Plot openloop gain G in a complex plane (i.e. Nyquist diagram)

§ If the locus of G(f) from f=0 to ∞, goes to 0 looking at the point (-1 + 0 i)
at the left side => Stable

§ If the locus sees the point (-1+o i) at the right side => Unstable

Re

Im

-1 Stable

Unstable

§ Unity gain frequency fUGF : for |G(fUGF)| = 1
§ Phase margin θ : θ = Arg(G(fUGF))
§ Gain margin g: g = 1/|G(f0)|   where   Arg(G(f0)) = -π

-1

|G|=1

θ

1/g

Im
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¡ Phase Margin / Gain Margin in Bode diagram
§ Most of the case, a bode diagram of G is enough to see the stability 

Nearly
unstable

Gain Margin
4.3dB@420kHz

-180deg

Phase Margin
48deg

Unity Gain Freq
(176kHz)

A rough standard of
a stable servo loop:
Phase Margin > 40deg
Gain Margin > 10dB



¡ Building blocks (“zpk” representation) 

§ Single pole

§ Single zero

§ A pair of complex poles

§ A pair of complex zeros

§ Gain
H(s) = K (K 2 R)

H(s) =
sp

s+ sp
(sp 2 R, sp > 0)

H(s) =
s+ sz
sz

(sz 2 R, sz > 0)

H(s) =
sps

⇤
p

(s+ sp)(s+ s⇤p)
(sp 2 C, <(sp) > 0)

H(s) =
(s+ sz)(s+ s⇤z)

szs⇤z
(sz 2 C, <(sz) > 0)



¡ Relationship between pole/zero locations and w0&Q

¡ To be compared with

H(s) =
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3.3 力学モデル計算による懸架システムの設計 35
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として、Q値と共振周波数を求めることができる。過減衰ではない系に対しては、対になってい
る極を

ω = ±ωR + iωI (3.27)

と表せば、
ω0 =

√
ω2

R + ω2
I (3.28)

Q =
ω0

2ωI
(3.29)

となり、片方の極の位置からだけでもQ値や共振周波数を知ることができる。

3.3.5 剛体モデルにおける運動方程式の計算法

質点モデルでは力学モデルから運動方程式をたてるのは容易である。しかし、剛体モデルの場
合自由度が著しく増え、また系を構成する要素も多くなり、計算は複雑となる。
剛体モデルにおける運動方程式の計算には 2つの方法がある。

1. 解析力学的手法

各自由度の変位に対し Lagrangian Lを計算し、Euler-Lagrange方程式

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0 (3.30)

により運動方程式 (すなわち各行列、ベクトルの成分)を得る手法。

2. 系に静的仮想変位を与え、その線形応答を見る方法

3.
3
力
学
モ
デ
ル
計
算
に
よ
る
懸
架
シ
ス
テ
ム
の
設
計

35

2.
0

1.
5

1.
0

0.
5

0.
0

-0
.5

Im(ω/ω0)

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

R
e(
ω
/ω

0)

Q
=I
nf
in
ity

Q
=I
nf
in
ity

Q
=0
.5

図
3.

6
1
質
点
系
に
お
け
る
複
素

Fo
ur

ie
r平
面
上
の
根
軌
跡

と
し
て
、

Q
値
と
共
振
周
波
数
を
求
め
る
こ
と
が
で
き
る
。
過
減
衰
で
は
な
い
系
に
対
し
て
は
、
対
に
な
っ
て
い

る
極
を

ω
=

±
ω

R
+

iω
I

(3
.2

7)

と
表
せ
ば
、

ω
0

=
√

ω
2 R

+
ω

2 I
(3

.2
8)

Q
=

ω
0

2ω
I

(3
.2

9)

と
な
り
、
片
方
の
極
の
位
置
か
ら
だ
け
で
も

Q
値
や
共
振
周
波
数
を
知
る
こ
と
が
で
き
る
。

3
.3

.5
剛
体
モ
デ
ル
に
お
け
る
運
動
方
程
式
の
計
算
法

質
点
モ
デ
ル
で
は
力
学
モ
デ
ル
か
ら
運
動
方
程
式
を
た
て
る
の
は
容
易
で
あ
る
。
し
か
し
、
剛
体
モ
デ
ル
の
場

合
自
由
度
が
著
し
く
増
え
、
ま
た
系
を
構
成
す
る
要
素
も
多
く
な
り
、
計
算
は
複
雑
と
な
る
。

剛
体
モ
デ
ル
に
お
け
る
運
動
方
程
式
の
計
算
に
は

2
つ
の
方
法
が
あ
る
。

1.
解
析
力
学
的
手
法

各
自
由
度
の
変
位
に
対
し

La
gr

an
gi

an
L
を
計
算
し
、

E
ul

er
-L

ag
ra

ng
e
方
程
式

d dt
∂
L

∂
q̇ i

−
∂
L

∂
q i

=
0

(3
.3

0)

に
よ
り
運
動
方
程
式

(す
な
わ
ち
各
行
列
、
ベ
ク
ト
ル
の
成
分

)を
得
る
手
法
。

2.
系
に
静
的
仮
想
変
位
を
与
え
、
そ
の
線
形
応
答
を
見
る
方
法



¡ Summary

§ Classical control theory

§ Design locations of poles and zeros

§ Stability: tuning of open loop transfer function is important





¡ Elements of a feedback loop (again)
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¡ Local control vs global control
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Figure 4. Front- and rear-view CAD designs of the BOSEMs.

Figure 5. (Left) Schematic of the integrated BOSEM’s subsystems. (Right) Sketch showing the
BOSEM’s shadow sensing scheme. Relevant dimensions are the mask aperture 1.5 mm × 4.5 mm
and the mask-PD separation 5 mm.

is operated at about 15% of its maximum radiant power (10 mW), which combined with the
PD output (0.55 A/W) results in a mean photocurrent at the PD output of ipd ≃ 62.5 µA,
when the flag is in half-light position (i.e. PD sensing area obscured by 50%). The measuring
range of the optical sensor is about 700 µm, determined by the dimensions of the PD sensing
area. The average responsivity, when measured with the accompanying satellite box amplifier,
ranges around Resp ∼ 20 kV m−1, as shown in figure 6 (left). The ultimate limit to the BOSEM
read-out sensitivity is set by photocurrent shot noise in the PD, and it can be expressed as
S1/2

x =
√

2 · e · ipd · ZR/Resp, where e is the electron charge and ZR = 320 k! is the resistance
of the trans-impedance amplifier at the output of the PD, resulting in an ultimate displacement
sensitivity about 7 × 10−11 m Hz−1/2. The measured BOSEM sensitivity, as shown in
figures 6 (right) and 7 (left) in comparison with the Advanced LIGO requirement, is typically
limited by photocurrent shot noise in the PD at frequencies above 10 Hz, and by 1/f
photocurrent noise in the LED at lower frequencies.

To actuate on the suspended test masses, the BOSEM incorporates a magnet that is rigidly
mounted with the flag and it is concentrical to a coil purposely driven by the coil drivers
(see figure 5). To cater for the large weight of the suspended masses, the BOSEMs provide
peak actuation forces up to about hundreds of mN per actuator, about one order of magnitude
enhancement with respect to the Initial LIGO OSEM. This is achieved with a modified coil
design (800 turns of polyimide-coated 32-AWG wire) and with 10 mm × 10 mm Nd–B–Fe
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¡ Shadow sensor (relative displacement sensor)
§ aLIGO: Birmingham Optical Sensor 

and Electro-Magnetic actuator (BOSEM)

¡ Linear Variable Differential Transducer
(relative disp. sensor)

¡ Optical Lever (relative angular sensor)

Local
Oscillator

Sensor
Output

Lock−in amp

Probing
coil

Laser Mirror

Quadrant
Photodiode

dθ
L

dx = 2 L dθ
A                      B

C                      D
SUM = A+B+C+D
X  = A–B+C-D
Y  = A+B-C-D



¡ Accelerometers (Inertial sensor)

§ Piezo Accelerometer

§ Servo Accelerometer

+++

- - -

Charge amp

PIEZO
TRANSDUCER

Mass

Housing
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F x0 
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feedback
control 
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¡ Servo Accelerometer (Inertial sensor)
§ Above the resonant freq: Limited by the sensor noise

§ Below the resonant freq: 
Steep rise of the noise as the mass does not move 
in relative to the ground
=> Low resonant freq is beneficial

 

 
 

Fig.1.  Basic model of folded pendulum. A simple pendulum and an 
inverted pendulum are rigidly connected by a massless beam. The pendula 
arms are also massless, rigid and provided with suitable flexures. 
 

The resonant frequency of the system is given by:   
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where γ represent the effect of cumulative flex-joint’s 

stiffness. The resonant frequency can be lowered, in principle, 
arbitrarily by adjusting the center of mass position with respect 
to the two arms. Natural periods ranging from seconds to 
minutes can be achieved in compact sizes making the FP the 
best geometry for horizontal sensors. This configuration has 
been reproduced  in a monolithic version (see Fig.2) for the 
mechanics of the horizontal accelerometers of the advanced 
SAS seismic attenuation systems, by using a combination of 
traditional and wire electric discharge machining (EDM). 
 

 
 
Fig.2.  Monolithic realization of a folded pendulum: the bottom left and top 

right flexures proof mass is connected to the simple pendulum (SP) by means 
of the bottom right flexure and to the inverted pendulum (IP) by means. 

 
A side view of the monolithic FP accelerometer is proposed in 
Fig.3. The mechanics is obtained from a 140x134x40 mm 
block of 7075 aluminum alloy. A thin 250 µm wide EDM cut 
is used to separate the two pendulum arms and the proof mass 
from the frame; 50 µm thick tensional circular notch flexures, 
four on each side of the accelerometer, connect the proof mass 
to the structure. The arms are 71.5 mm long and the equivalent 
suspended mass is 0.83 Kg. The accelerometer was designed 
with the load almost exactly balanced on the two arms. In this 
way the instrument’s behaviour is dominated by the restoring 
force of the flexures; a resonant frequency of 540 mHz has 
been achieved.  

 

 
 

Fig.3. Side view of the monolithic folded pendulum horizontal 
accelerometer we have designed for SAS advanced seismic attenuation 
systems. Two second natural period is achieved by design. 
 
The FP accelerometer normally operates under vacuum;  
hence, excluding gas damping, the only damping forces are 
localized in the flexures which allow the movement of the 
proof mass.  
A Q=3000 mechanical quality factor is obtained at pressures 
below 10-2 mbar; a typical free decay time series is shown in 
Fig.4. At atmospheric pressure the constrained air flow 
between the closely spaced surfaces of the EDM cut and the 
capacitive readout plates limits the quality factor to 7.  
 

 
 
Fig.4. Mechanical free decay measured in low vacuum. The natural period 

is 2 sec; the decay time of about 2000 sec corresponding to Q=3000. 
 
In vacuum the Brownian motion amplitude of the proof mass 
emulates a frame inertial displacement of 0.5 nm r.m.s., which 
represents the ultimate resolution limit of the instrument. 
The main feature of this mechanical design is the insensitivity 
to unwanted degrees of freedom. The entire machining, milling 
and EDM, are done with the full accuracy of numerical control 
machines; the equality of the two pendula length, their relative 
positioning and alignment, as well as the parallelism and 
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¡ Mechanical actuators

§ Coil Magnet actuator

§ Electro Static Driver (ESD)

§ Piezo (PZT) actuator
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Figure 4. Front- and rear-view CAD designs of the BOSEMs.

Figure 5. (Left) Schematic of the integrated BOSEM’s subsystems. (Right) Sketch showing the
BOSEM’s shadow sensing scheme. Relevant dimensions are the mask aperture 1.5 mm × 4.5 mm
and the mask-PD separation 5 mm.

is operated at about 15% of its maximum radiant power (10 mW), which combined with the
PD output (0.55 A/W) results in a mean photocurrent at the PD output of ipd ≃ 62.5 µA,
when the flag is in half-light position (i.e. PD sensing area obscured by 50%). The measuring
range of the optical sensor is about 700 µm, determined by the dimensions of the PD sensing
area. The average responsivity, when measured with the accompanying satellite box amplifier,
ranges around Resp ∼ 20 kV m−1, as shown in figure 6 (left). The ultimate limit to the BOSEM
read-out sensitivity is set by photocurrent shot noise in the PD, and it can be expressed as
S1/2

x =
√

2 · e · ipd · ZR/Resp, where e is the electron charge and ZR = 320 k! is the resistance
of the trans-impedance amplifier at the output of the PD, resulting in an ultimate displacement
sensitivity about 7 × 10−11 m Hz−1/2. The measured BOSEM sensitivity, as shown in
figures 6 (right) and 7 (left) in comparison with the Advanced LIGO requirement, is typically
limited by photocurrent shot noise in the PD at frequencies above 10 Hz, and by 1/f
photocurrent noise in the LED at lower frequencies.

To actuate on the suspended test masses, the BOSEM incorporates a magnet that is rigidly
mounted with the flag and it is concentrical to a coil purposely driven by the coil drivers
(see figure 5). To cater for the large weight of the suspended masses, the BOSEMs provide
peak actuation forces up to about hundreds of mN per actuator, about one order of magnitude
enhancement with respect to the Initial LIGO OSEM. This is achieved with a modified coil
design (800 turns of polyimide-coated 32-AWG wire) and with 10 mm × 10 mm Nd–B–Fe
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The whole pattern, as it is now

Connections

Foil jumper

Foil jumper



¡ Optical actuators

§ Acousto-Optic Modulator

§ Electro-Optic Modulator

§ Laser Frequency actuator
1. Thermal actuator

2. Fast piezo actuator

3. External EOM

PZTPropagating
Sound waves

Transmitted
beam !

Deflected
beam !+#fLO 

Incident
beam
!

Local Oscillator
fLO

LiNbO3 crystal



¡ Comparison of the control room in the analog and digital eras

TAMA300 (2001)

aLIGO (2014)


