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Contents

• Introduction
• How is hydroxide catalysis bonding used in the detectors
• Chemistry of Hydroxide catalysis bonding (HCB)
• But hydroxide catalysis bonds are invisible by eye between fused silica.

This is very! Interesting. What about optical applications?
• Two interesting properties

• Optical absorption
• Reflectivity

• How could this be interesting for our gravitational wave detectors?
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Introduction to hydroxide catalysis bonding
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• GEO600, aLIGO, and advanced VIRGO have quasi-monolithic test mass
suspensions in fused silica which show superior thermal noise
performance at room temperature

• Hydroxide catalysis bonding is used in all to attach some form of
interface piece to the mirror to allow attachment of the fibres (which
are welded)
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Chemistry of hydroxide catalysis bonding
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This method can create strong, durable bonds.

Chemistry of bonding between silica surfaces:
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In aLIGO sodium silicate solution is used as the bonding solution. In
advanced Virgo potassium hydroxide and sodium silicate solution is used
[van Veggel & Killow, Adv. Opt. Appl., 2014].
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Optical properties
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Hydroxide catalysis bonds between fused silica components look highly
transparent to the naked eye.
Optical applications could be highly interesting

e.g. fibre coupling, laser gain media, optical filters

In Glasgow we are working on two different measurements
1) Optical reflectivity of bonds

also very interesting as gives possibility of in situ measuring
bond thickness

2) Optical absorption of bonds

Very much ongoing research, but we present some results here.
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Optical reflectivity set-up
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Reflectivity
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Two pairs of fused silica discs
(50 mm, 5 mm thick, produced by Edmund optics)
Bonded using 1:6 sodium silicate solution
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Optical reflectivity set-up
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Model used is that for Fresnel reflection with thin film interference for
the bond layer.
Bayesian likelihood analysis using the least squares method
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Bond refractive index a.f.o. curing time
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Bond thickness a.f.o. curing time
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Conclusions reflectivity measurements
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• We have a non-destructive method of determining bond thickness
and refractive index from reflectivity measurements

• Reflectivity of 1:6 sodium silicate bond has a settling period up to
the 20th day after which it gradually drops to below 10-5 after
about 3 months.

• The bond thickness settles as well (can vary up and down in the
first 20 days), but overall drops to a constant value.

• The refractive index increases over time from a value of 1.36 to
1.45 . 1.34 can be shown to be the refractive index of the solution,
1.45 approaches the refractive index of fused silica

• Look at this in ‘peace and quiet’ at the poster session.
G1601717 – Valentina Mangano
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Other reflectivity measurements
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• For a potassium hydroxide bond the reflectivity is immediately
(within 3 days after bonding) below 10-5 and drops to a few times
10-7 after two months (analysis of this data is underway)

• Measurements of sapphire substrates (C-axis along the optical
axis) bonded using sodium silicate are also underway.

• Reflectivity of order 10-2 are measured and levels remain high
over curing time.

• Aim to measure bond reflectivity, thickness and refractive index
for

• baking at elevated temperature
• varied concentration of solution with silica substrates
• other solutions for sapphire substrates
• other substrate materials (e.g. phosphate glass, YAG)
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+         =
Fused silica substrates (Corning 7979)
(25 mm, 6.35 mm thick)

Bond is equivalent to a thin film
between the two substrates

The sample:

Absorption of a bond between
fused silica substrates
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Bond made using 1:6 sodium silicate solution (0.8 µl/cm2)
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Pump beam,
1550 nm

Probe beam,

1620 nm
Lock-in amplifier

sample
detector

A. Alexandrovski et al. Proc. SPIE 3610, Laser Material Crystal Growth and
Nonlinear Materials and Devices, 44 (May 26, 1999);

Photo-thermal commonpath interferometry (PCI)

Photo-thermal commonpath interferometry

13



LIGO-G1601661

A typical PCI signal

A typical PCI signal:

This is an example  measurement from the Corning 7979  bonded sample
14
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The bond absorption measurement
@ 1550 nm
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The bond absorption measurement –
time development
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The bond absorption measurement –
different wavelengths
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Conclusions absorption measurements

18

• Absorption measurements of Corning 7979 substrates bonded with
1:6 sodium silicate solution as a function of curing time (about 1
month) show
• @1550 nm a drop in absorption from 165 ppm down to 55 ppm
• @ 2 µm the absorption is 5 x higher than @ 1550 nm
• @ 1064 nm the absorption is < 2 ppm

• Drop in absorption is probably dominated by the migration of water
out of the bond area (evaporation)

• Two different apparent mechanisms appear; cause is under
investigation

• Reason for baseline level is under investigation; sodium absorption??
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How could this be interesting in GW science?
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• We have a non destructive measurement method to measure bond
thickness which we could potentially develop further to measure
bond thicknesses in actual suspensions for more accurate bond
thermal noise calculations.

Interesting further afield as well…
• Direct coupling of fibre optics.
• Laser gain medium development.

• We want low absorption so bonds can withstand  high light
power levels

• We want ability to tailor reflectivity levels to optimise optical
performance
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THANK YOU!
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Optical reflectivity set-up
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fused silica

fused silica

sodium hydroxide solution

Model used is that for Fresnel reflection with thin film interference
for the bond layer.
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Optical reflectivity set-up

The refractive index of mixed liquids can be considered proportional
to the volumes of each liquid used.
Sodium silicate solution is made of Na2O ~ 10.6% (no effect on the
refractive index), SiO2 ~ 26.5% (nSiO2 = 1.55) and H2O ~ 62.9% (nH2O =
1.33 ) and, therefore, the refractive index of the sodium silicate
solution is: 26.5x1.55 + 62.9x1.33 = 89.4xnsodium silicate -> nsodium silicate =
1.39. The bonding solution is composed of 2 ml of sodium silicate
solution and 12 ml of DI water, and its refractive index is: nsolution =
1.34. The value obtained is the starting point (within error) of
refractive index of the bond material.
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A typical PCI signal

A typical PCI signal:

This is an example  from a different sample (silicon nitride) for
illustration purposes 23
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Photo-thermal common path interferometry

Pump beam changes refractive
index of an element in the probe
beam

Dn

The method:

24
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Pump beam changes refractive
index of an element in the probe
beam

I
I ~

The wavefront from this
element is different from
the rest of the beam

We measure this phase difference by
imaging the plane 1 Rayleigh range from
the intersection point

(virtual detection plane)

Dn

Photo-thermal commonpath interferometry

25
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Pump beam changes refractive
index of an element in the probe
beam

I
I ~

The wavefront from this
element is different from
the rest of the beam

We measure this phase difference by
imaging the plane 1 Rayleigh range from
the intersection point

(virtual detection plane)

Dn

Getting absorption by
comparing signal to calibration
substrate with known absorption

Photo-Thermal Commonpath Interferometry

26
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Exponential fit to each point for the
first 8 days:
- top: exponential decay constant
- bottom: initial absorption value

(in ppm)

- higher initial absorption
decreases slower (for most of the
area)

- supports assumption of
absorption due to water

- higher water content close to
centre of sample: water in
centre drifts out slower
(further away from edges)

- ???


