
Improving the stochastic template bank algorithm used for detection of compact
binary systems by Advanced LIGO

Lucas Shadler∗ and Kent Blackburn†

(LIGO SURF Program, Summer 2016)
(Dated: July 29, 2016)

Within the next few years, LIGO anticipates between tens and hundreds of gravitational wave
(GW) detections. This increase in signal events will inevitably require a more efficient form of
analysis. Extending the current method of providing template simulations for analysis with a more
intelligent coverage of the parameter space might avoid excessive delays and computational costs
in analysis. The Metropolis-Hastings algorithm generates intelligent proposal templates to increase
the likelyhood of placement in the bank of templates. Exploiting the benefits of parallel computing
on powerful multi-core machines offers the potential for dramatic improvements in runtime at no
cost of coverage. Thus, current functions contained in the inspiral libraries will be re-factored in the
interest of having a parallelized stochastic template bank [1] generation before the start of Advanced
LIGO’s first observation run.

LIGO Document T1600288

I. MOTIVATION FOR STOCHASTIC
TEMPLATE BANKS

Gravitational waves (GW) are ripples in the curvature
of spacetime, caused by the accelerating motion of a mas-
sive body. Gravitational-wave detectors has made sev-
eral recent advances that have led to the first detections
of gravitational waves [2]. These waves have small am-
plitude and propagate in two transverse polarizations,
denoted “plus” and “cross.” Detection and analysis of
these signals allow scientists to probe new areas of the
universe with precision. Signal events can result from
the inspiral, merger, and ringdown of massive binary sys-
tems made up of neutron stars and/or black holes. The
continued advance of gravitational-wave detection meth-
ods bring groups such as Advanced LIGO and Advanced
Virgo to anticipate the number of positive signal detec-
tion to increase rapidly within the next few observation
runs [3].

Using Post-Newtonian (PN) approximations to the in-
spiraling compact two-body problem, accurate models of
the near-final state dynamics can be created, covering a
fixed range within the physical parameter space. Hidden
behind noise, a positive signal can be extracted through
matched filtering [4]. Raw data is filtered through an
array of hundreds of thousands of the modeled wave-
forms, or templates, known as a template bank [1]. The
template spans a subset (mass and aligned spin) of the
physical parameter space. Adjacent templates are as-

∗ lxs2208@rit.edu; School of Physics and Astronomy, Rochester
Institute of Technology

† kent@ligo.caltech.edu; Division of Physics, Mathematics and As-
tronomy, California Institute of Technology

signed a minimal match to the signal to optimize detec-
tion chances against the computational cost.

Evolving from the original mathematically-ordered lat-
tice [5], the currently implemented method exploits the
Metropolis-Hastings algorithm [6] to generate the bank
stochastically with a significant reduction of computa-
tional cost. This paper will discuss the explored and
planned methods to further increase the efficiency of the
stochastic template bank algorithm.

II. CONCEPTUAL MODEL

In order to gain a deeper understanding of the under-
lying algorithm and lay the ground work for optimiza-
tion, a “conceptual model” of the template bank was
produced. The parameter space contained generic “x”
and “y” parameters, each with a range of 0 to 1, exclu-
sive. A non-Euclidean metric was defined for the space
in order to simulate the computational cost of The al-
gorithm was tasked with placing points randomly within
this space such that the distance between any two points,
as assigned by the metric, does not exceed a set value.
The initial algorithm followed basic Monte Carlo format:

1. Choose random numbers between 0 and 1 in each
dimension.

2. For every point that has already been placed, cal-
culate the distance between the new point and that
point as given by the metric.

3. If the distance is smaller than a defined minimal
distance, the reject. Else accept the point.

4. Repeat the above process until a set number of trial
points are rejected consecutively.

The effectiveness of each algorithm is tested on its run-
time as well as the ability to cover the space, as the ideal
algorithm will fill the entire space with minimized compu-
tational cost. The runtime is recorded with built-in mod-
ules native to the language. Then, a uniformly spaced



2

grid of points is produced, and tested to see if any would
be accepted into the bank. The percent coverage can be
defined as one minus the ratio of the number accepted
over the number that would be accepted to an empty
space. This method is very simple, and fills the space,
but lacks any form of intelligent placement of points, so
the number of calculations (and thus the runtime) suffers.

A. Metropolis-Hastings

The need for a more intelligent proposal system lends
itself to the implementation of the Metropolis-Hastings
algorithm, which uses an effectively biased distribution
in choosing the next point. The space was divided up
into cells of equal area in both dimensions. For each cell,
a rejection probability was defined as

preject =
nreject

nreject + naccept
, (1)

where nreject is the number of points rejected and naccept
is the number of points rejected in that cell. Every time
a point is generated, a random number is generated and
compared to the rejection statistic defined in the cell con-
taining the new point. If the rejection statistic is less
than the random value, the the distance calculations will
be carried out. Otherwise, the algorithm will jump to a
new section. This will avoid running several redundant
calculations on a point that will likely be rejected. Since
the number of rejections will inevitably and rapidly ex-
ceed the number of acceptances, the rejection statistic
will approach unity. Thus, the exit case can be defined
to leave the algorithm once the preject exceeds a critical
value in each cell.

FIG. 1. Plot of percent coverage versus the rejection statistic
critical value. It is roughly linear for most values but asymp-
totic as preject approaches unity.

TABLE I. Coverage and Runtime vs Number of Jumps

Jumps Coverage (%) Runtime (s)
2 100 700
10 100 200
50 99.75 80
75 99.75 73
200 98.75 52
∞ 96.7 40

Allowing this jumping process clearly offers improve-
ments to runtime. However, since cells that randomly
had a large number of rejections towards the beginning
of the process will continue to be passed, there is a poten-
tial loss in coverage due to jumping. This suggested that
limiting the number of allowed jumps before overriding
the jump test and forcing the point to be tested could
mitigate the loss in coverage. Table I is a recording of
the impact of limiting the number of consecutive jumps
on runtime and coverage percentage. There is a clear
trade-off between coverage and runtime as this value is
increased, and illustrates a potential danger of Figure 1
shows the Percent coverage of the space as a function of
preject, averaged over ten trials for each value.

B. Parallel Computing

With access to very large, multi-threaded machines, it
becomes clear that parallel programming will result in
the greatest runtime improvement. Several outlets were
explored, including CUDA, OpenMP, and Julia. CUDA
is a gpu-parallel-computing framework, and has been set
aside for now in the interest of potential future explo-
ration. Julia is a new and up-and-coming numerical
computing language developed at MIT [7] for the scien-
tific community. It functions with Python libraries, offers
friendly syntax, uses an in-house compiler and takes ad-
vantage of open-source C and Fortran numerical libraries
in order to offer performance that can almost rival that
of low level languages. However, the parallel computing
offered natively by Julia functions by message passing,
where each new process is remotely called by the main
“parent” process. In order to improve the runtime of the
stochastic template bank generation, the parallel com-
puting must exist in the paradigm where each thread
acts independently from each other, manipulating it’s
own data exclusively.

Eliminating several options, coupled with the fact that
a great deal of the framework for LIGO is implemented
in C, OpenMP stood out as a stellar option for paral-
lel computing. Short for Open-source Multi-Processing,
OpenMP offers simple compiler flags and directives to
run any number of processes (defaulted to the number of
Central Processing Unit (CPU) hyper-threads) simulta-
neously on a machine. Now that most modern computers
have several CPU cores contained on their machines, run-
ning processes simultaneously can offer several runtime



3

improvements, dividing the computational cost between
threads.

Code was written in C using the OpenMP framework.
Once again the parameter space is separated into several
equal-area cells. The program then split up the com-
putation by assigning a thread to each section However,
for simplicity, the original algorithm was tested, ignoring
the Metropolis-Hastings algorithm. The result was an
decrease in runtime by a factor of between 150 and 600
with no loss of coverage. Although it wasn’t flushed out
in this prototype, it is foreseeable that dividing each cell
further and exploiting the Metropolis-Hastings algorithm
with each thread should generate even greater improve-
ments to efficiency.

The efficiency of this method can be improved further
still. It is foreseeable that as some spaces fill very quickly
with valid templates, such cells would be likely to com-
plete early and simply wait for all threads to meet the exit
condition before returning to the program. To mitigate
this potential misuse of resources, a linked list was cre-
ated in C to hold each cell containing templates. When
the program begins to execute in parallel, every thread
will run on the entire parameter space. When a cell meets
its exit condition, that cell will simply be removed from
the linked list. When the linked list is empty, all threads
will join and return to the program. Thus all threads
will run computations until the bank has been completely
filled.

III. LSC ALGORITHM LIBRARY
IMPLEMENTATION

With the desire to implement the OpenMP framework,
the stochastic bank generation must be written in C. In
order to exploit the benefits of parallel computing, sev-
eral structures required by the algorithm, which are cur-
rently implemented in Python, will have to be re-factored
into C files that can be included. Several functions are
already implemented in C, including mathematical con-
stants, and the waveform generation given mass and spin
parameters. However, unit conversions, random proposal
generation, and minimal match calculations require im-
plementation. Input can still be handled by the previous
used Python code, as the necessary information of the
parameter space can be transferred via a plain text file.
Output will now be transferred to the C code, as there are
already implementations to generate the necessary data
files. After all sections are fully implemented, the newly
generated C functions can be encapsulated for succinct
python implementation using SWIG.

A. Random Proposal Generation

The proposal generation produces random values of
masses and spins in the parameter space defined phys-
ically and also by command line arguments. New pro-

posals are generated in the τ0 − τ3, or chirp time space,
as the templates in this space have relatively uniform
density, and thus will effectively benefit from divided
computation. Figure 3 shows a sample template bank
ranging from 10 to 25 solar masses individually. This
sample bank includes the effective spin χeff = (s1m1 +
s2m2)/(m1 +m2) represented as the color gradient. The
boundary conditions in chirp time space space are very
difficult to constrain, causing previous implementations
of the stochastic algorithm to generate non-real values
for τ0 and τ3.

The previously referenced paper on hexagonal tem-
plate placement [5] derives characteristic curves that con-
strain the chirp time space given allowed values for the
total mass M = m1+m2 and η = m1m2/M

2 = q/(q+1)2

where q = m1/m2 is the mass ratio. Manipulating these
equations yields six curves that constrain the parameter
space, given by

τ3 <
A3

A
2/5
0

τ
2/5
0

η
3/5
min

(2)

τ3 >
A3

A
2/5
0

τ
2/5
0

η
3/5
max

(3)

τ3 >
A3

A0
τ0Mmin (4)

τ3 <
A3

A0
τ0Mmax (5)

τ3 <
A3

A0
τ0x

3

∣∣∣∣
me=m1,min

(6)

τ3 <
A3

A0
τ0x

3

∣∣∣∣
me=m1,max

(7)

In this system, A0 and A3 represent numerical con-
stants related to the low-cutoff frequency fL and x rep-
resents the cubic solution to the equation

x3 +
A0

τ0/me
x−me = 0 (8)

where me are the extreme values of m1. Taking u =
−A0/(τ0/me) and v = −me, the solution is

(9)

x =

(
−q

2
− 1

2

√
27u2 + 4v3

27

)1/3

+

(
−q

2
+

1

2

√
27u2 + 4v3

27

)1/3

Figure 7 plots all six constraint curves in the chirp time
space. With these constrains on τ3, new proposals can
thus be generated efficiently by selecting a random τ0
value and generating a τ3 that meets each of these con-
ditions. To avoid the computational cost of this method,
critical points in m1 −m2 space are recorded in τ0 − τ3.



4

Using the critical values bounding the parameter space,
regions in τ0 are defined where fewer constraint curves
need to be examined. Once a τ0 is randomly chosen,
the fewest amount of curves possible will be tested to
produce a valid τ3 random variate. This improves on
previous stochastic bank generations since the bounds of
τ0 will be generated only once.

FIG. 2. Plot of the constraining curves given by Eqn. 7.
These curves represent a space with the two masses ranging
between 10 and 25 solar masses, and the mass ratio ranging
from 1.75 to 2.5.

B. Brent’s Algorithm

It was quickly discovered that the extreme values in the
mass parameter space were insufficient in giving a tight
coverage of chirp time parameter space. In particular,
the upper bound in τ0 often extended past the maximum
physically allowed value. Careful analysis indicated that
the upper bound always coincides with the intersection
between the m1,min cubic curve and the ηmax curve, ex-
pressed as a single equation as

A3

A0
τ0x

3 − A3

A0
τ0Mmax = 0 (10)

As there are no closed-form analytical solutions to this
equation currently, a numerical approach was taken.
For speed of convergence, the Van Wijngaarden-Dekker-
Brent Method[8] is used. Often referenced as “Brent’s
Method”, this algorithm uses careful book-keeping to al-
ternate between several different numerical methods as
they become more appropriate to reach a convergence. A
implementation for C was taken from Numerical Recipes
in C [9]. Combining superlinear methods of approxima-
tion with bijection algorithms, this algorithm converges
on any bracketed root. The bounds were chosen as
small increment larger than the original lower and up-
per bounds. This avoids the potential of the algorithm
converging on a root in the lower bound and gives the po-
tential for it to converge on the true upper bound while
avoiding the risk of floating point precision errors when
bracketing the upper bound. The lower bound can be cal-
culated mirroring this method in the negative direction.

This provides careful and tight bounding of the τ0 space,
allowing for consistent and efficient proposal generation.

FIG. 3. Sample stochastic template bank in τ0−τ3 space. The
space has nearly uniform template placement but nonlinear
boundaries.

C. Minimal Match Calculation

Once physically allowed and well-defined proposals are
made, the proposals will are converted to waveforms.
Each method of template generation requires a different
set of initial parameters and will produce waveforms of
varying accuracy. Each waveform simulation has already
been implemented in C and accessed through functions
contained within the LALSimulation library and yields
the “plus” and “cross” polarization strains individually
as 16-bit complex series of a given frequency or time step,
dependent on the desired domain. Once the waveforms
are created, the minimal match between each template
must be evaluated. This is defined as the inner product
between two templates that is normalized by the power
spectral density, and the user specifies a required mini-
mal overlap (typically 97%). Since this computation is
an integrative method, it can also be run in parallel for
an increase in speed, calling multiple threads and divid-
ing the integration process. Excessive calculations can
be avoided by immediately rejecting any templates that
clearly don’t belong in the template bank after a coarse
integration is run. Current methods require that the
coarse overlap calculation yield a value 5% lower than
the given minimal match parameter. A finer integration
can be run on any that meet the condition on the coarse
evaluation.



5

IV. CONCLUSIONS

As it stands currently, the framework fully implements
a stochastic bank that can generate a template bank with
a minimal match of 97%. This process, depending on
the method of waveform generation and the extent of
the parameter space, can take as long as two weeks to
generate. With an increase in signal events, there will
not be enough computational power available to dedicate
so much time to each template bank generation without
performance improvements in the algorithms.

Extensive work has been undertaken to ensure that
some of the losses in efficiency are eliminated for this
new implementation. Although the largest computa-
tional cost is the overlap calculations, significant com-
putation time will be saved by the tighter constraints
that have been placed on the valid proposal generations.

Using the new techniques of parallel computing to di-

vide the computational requirement among CPU pro-
cesses, the potential for an improvement in runtime by
several orders of magnitude has been shown. It has also
been demonstrated that the algorithm can be developed
within the currently standing libraries, both taking ad-
vantage of previously developed code and creating new
functions as needed. While the algorithm alone will re-
duce CPU time, the clock time required to generate the
template bank will be greatly improved by the parallel
computing, as well as the algorithm. The addition of
the linked list eliminates the risk of individual threads
to finish early on their portion of the space, allowing for
a more complete use of the computational power this
method provides. The code is anticipated to run in its
entirety within a few hours. Reducing the runtime by this
margin will open up the powerful computational tools to
other processes, allowing more events to be digested by
the LIGO Data Grid.

[1] S. Babak, R. Balasubramanian, D. Churches, T. Coke-
laer, and B. S. Sathyaprakash. A template bank to search
for gravitational waves from inspiralling compact bina-
ries: I. Physical models. Classical and Quantum Gravity,
23:5477–5504, September 2006.

[2] Observation of gravitational waves from a binary black
hole merger. Phys. Rev. Lett., 116:061102, Feb 2016.

[3] Krzysztof Belczynski, Serena Repetto, Daniel E. Holz,
Richard O’Shaughnessy, Tomasz Bulik, Emanuele Berti,
Christopher Fryer, and Michal Dominik. Compact Binary
Merger Rates: Comparison with LIGO/Virgo Upper Lim-
its. Astrophys. J., 819(2):108, 2016.

[4] Benjamin J. Owen and B. S. Sathyaprakash. Matched
filtering of gravitational waves from inspiraling compact
binaries: Computational cost and template placement.
Phys. Rev., D60:022002, 1999.

[5] T. Cokelaer. Gravitational waves from inspiralling com-

pact binaries: Hexagonal template placement and its effi-
ciency in detecting physical signals. Physical Review D
- Particles, Fields, Gravitation and Cosmology, 76(10),
2007.

[6] Edward Greenberg Siddhartha Chib. Understanding the
metropolis-hastings algorithm. The American Statistician,
49(4):327–335, 1995.

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah.
Julia: A Fresh Approach to Numerical Computing. ArXiv
e-prints, November 2014.

[8] Richard P. Brent. Algorithms for minimization without
derivatives. Prentice-Hall series in automatic computa-
tion. Englewood Cliffs, N.J. Prentice-Hall, 1973.

[9] William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. Numerical Recipes in C (2Nd
Ed.): The Art of Scientific Computing. Cambridge Uni-
versity Press, New York, NY, USA, 1992.


