Gravitational Waves from Fallback Accretion and Black Hole Formation in Long GRBs

Kiranjyot Gill¹ and Sarah Gossan²

¹Embry-Riddle Aeronautical University ²Caltech

2016 LIGO SURF Program

18th August 2016

Kiranjyot Gill

GWs from long GRBs

Motivation

- Detectability prospects with current and future generation GW detectors for both Ott *et al.* (2011) and Piro & Thrane (2012) collapsar waveforms
 - cWB and X-pipeline
- Introduction of Gill & Gossan (2016)
 phenomenological gravitational waveform
- Proposal of a radio search focusing on broad-line type
 Ic SNe in low metallicity environments within 20 Mpc

> 2 seconds duration

Spectroscopically confirmed GRB-SN:

- GRB 980425 / SN 1998bw: z = 0.0085
- GRB 030329 / SN 2003dh: z = 0.1687
- GRB 031203 / SN 2003lw: z = 0.1055
- GRB 060218 / SN 2006aj: z = 0.0335

Smooth & featureless spectra

confirmed GRB-SN connection as a special class of Type Ic-BL SNe

GRB peak spectra energy correlated w/ SN max luminosity Red bump = interpreted as emergence of SN light curve

Zeh et. al (2004) = all LGRBs are associated with Type Ic-BL SNe

Kiranjyot Gill

GWs from long GRBs

average: 30 sec

> 2 seconds duration

Spectroscopically confirmed GRB-SN:

- GRB 980425 / SN 1998bw: z = 0.0085
- GRB 030329 / SN 2003dh: z = 0.1687
- GRB 031203 / SN 2003lw: z = 0.1055
- GRB 060218 / SN 2006aj: z = 0.0335

confirmed GRB-SN connection as a special class of Type Ic-BL SNe Smooth & featureless spectra

Zeh et. al (2004) = all LGRBs are associated with Type Ic-BL SNe

Kiranjyot Gill

GWs from long GRBs

average: 30 sec

> 2 seconds duration

Spectroscopically confirmed GRB-SN:

- GRB 980425 / SN 1998bw: z = 0.0085
- GRB 030329 / SN 2003dh: z = 0.1687
- GRB 031203 / SN 2003lw: z = 0.1055
- GRB 060218 / SN 2006aj: z = 0.0335

Smooth & featureless spectra

confirmed GRB-SN connection as a special class of Type Ic-BL SNe

GRB peak spectra energy correlated w/ SN max luminosity

Red bump = interpreted as emergence of SN light curve

Zeh et. al (2004) = all LGRBs are associated with Type Ic-BL SNe

Kiranjyot Gill

GWs from long GRBs

average: 30 sec

> 2 seconds duration

Spectroscopically confirmed GRB-SN:

- GRB 980425 / SN 1998bw: z = 0.0085
- GRB 030329 / SN 2003dh: z = 0.1687
- GRB 031203 / SN 2003lw: z = 0.1055
- GRB 060218 / SN 2006aj: z = 0.0335

Smooth & featureless spectra

confirmed GRB-SN connection as a **special** class of Type Ic-BL SNe

 $\ensuremath{\mathsf{GRB}}$ peak spectra energy correlated w/ SN max luminosity

Red bump = interpreted as emergence of SN light curve

Zeh et. al (2004) = all LGRBs are associated with Type Ic-BL SNe

Kiranjyot Gill

GWs from long GRBs

Kiranjyot Gill

GWs from long GRBs

<u>18th August 2016</u>

GWs from long GRBs

Kiranjyot Gill

GWs from long GRBs

Kiranjyot Gill

GWs from long GRBs

Collapsar progenitors need to satisfy 2 requirements:

- core-collapse produces a BH either promptly or shortly thereafter
- sufficient angular momentum must exist in order to form a disk outside the BH

Sensitivity of Current and Next Generation GW Detectors

Sensitivity of Current and Next Generation GW Detectors

- ★ u75 3D numerical simulations of a 75M_☉, 10⁻⁴ solar metallicity model with compact core that favors early BH formation
 - * u75a initial angular velocity of 1 rad s⁻¹
 - * u75b initial angular velocity of 1.5 rad s⁻¹
 - * u75c initial angular velocity of 2 rad s⁻¹

Ott et al. (2011)

GWs from long GRBs

- ★ u75 3D numerical simulations of a 75M_☉, 10⁻⁴ solar metallicity model with compact core that favors early BH formation
 - * u75a initial angular velocity of 1 rad s⁻¹
 - * u75b initial angular velocity of 1.5 rad s⁻¹
 - * u75c initial angular velocity of 2 rad s⁻¹

Ott et al. (2011)

Significant GW emission is associated with BH formation

viability of u75 depends on the GRB progenitor & if the mass transfer to a binary companion has removed the H/He envelopes

Kiranjyot Gill

GWs from long GRBs

GWs from long GRBs

GWs from long GRBs

Kiranjyot Gill

O11 Optimal SNR @ 1 Mpc

Waveforms	aLIGO	AdVirgo	KAGRA	Voyager	Einstein Telescope	Cosmic Explorer
u75a	0.4	0.2	0.2	1.1	3.8	6.2
u75b	0.7	0.4	0.4	2.1	7.2	11.7
u75c	0.9	0.5	0.5	3	9.9	16.2

Kiranjyot Gill

GWs from long GRBs

 Fallback accretion spins up NS from conservation of angular momentum

Accretion torus

Piro & Thrane (2012)

Kiranjyot Gill

GWs from long GRBs

GWs from long GRBs

- Fallback accretion spins up NS from conservation of angular momentum
- * Spin parameter reaches a critical value, β_c

Accretion torus

Kiranjyot Gill

Piro & Thrane (2012) 18th August 2016

- Fallback accretion spins up NS from conservation of angular momentum
- * Spin parameter reaches a critical value, β_c
- Above β_c, nonaxisymmetric instabilities occur

30 - 3000 s of high frequency = GW production until the NS becomes sufficiently massive to collapse into a BH

Piro & Thrane (2012)

Kiranjyot Gill

GWs from long GRBs

Waveforms	Radius (km)	η	M _{max}	tinitial	t _{final}	duration
PT12a	12	0.1	2	489.5 s	748.3 s	258.8 s
PT12b	12	1	2	89.3 s	118.3 s	29.3 s
PT12c	12	5	2	29.3 s	37.7 s	8.4 s
PT12d	14.5	0.1	2.2	480.9 s	1176.9 s	696 s
PT12e	14.5	1	2.2	88.2 s	149.6 s	61.4 s
PT12f	14.5	5	2.2	28.9 s	45.9 s	17 s

Kiranjyot Gill

GWs from long GRBs

PT12 h_{rss} @ 1 Mpc

Waveforms	h _{rss}		
PT12a	3.6540E-22		
PT12b	3.6547E-22		
PT12c	3.6556E-22		
PT12d	6.4001E-22		
PT12e	6.4010E-22		
PT12f	6.4020E-22		

Kiranjyot Gill

GWs from long GRBs

Proposed Radio Search for LGRBs + Type Ic-BL SNe

- Radio search focusing on constraining the upper limit of the rate of Type Ic-BL SNe through the detection of LGRBs in starburst clusters within 20 Mpc
- * Roughly 90 targets will be included in order to determine at least 90% chance of detecting an off-axis LGRB event
 - * Conduct observations at lower frequencies (1.4 GHz) in order to further understand the rapidly evolving radio SN
- Recent advances in nearby CCSNe search capabilities (i.e. ZTF) provide possibility of finding an off-axis LGRB within 10 yrs

2016 LIGO SURF Final Presentation

Proposed Radio Search for LGRBs + Type Ic-BL SNe

 Identified starburst cluster within 20 Mpc that serve as potential survey targets

Kiranjyot Gill

GWs from long GRBs 1

18th August 2016

10

2016 LIGO SURF Final Presentation

Proposed Radio Search for LGRBs + Type Ic-BL SNe

 Identified starburst cluster within 20 Mpc that serve as potential survey targets

18th August 2016

10

Kiranjyot Gill

GWs from long GRBs

Future Directions

- Finish running detectability prospects for GWs from fallback accretion by running cWB and X-pipeline search across the relevant parameter space with simulated noise for both advanced and 3rd generation detectors
- Implement realistic EoS: derive radius from mass evolution for finite temperature EoS
 - distinguishable at an effective distance (20 Mpc or less) that would produce equivalent waveform amplitude
- * Aiming for paper submission to ApJ in November 2016

DCC link to paper draft: https://dcc.ligo.org/P1600252-x0

Kiranjyot Gill

GWs from long GRBs

EXTRA SLIDES

Kiranjyot Gill

GWs from long GRBs

Physics of Piro & Thrane+12 (PT12) collapsar waveforms Issues

* As NS spins up ------ more oblate

- If the shape of the spun up NS becomes more bar-like, this may inhibit accretion
- Internal circulation patterns caused by secular instabilities may produce significant GW power at lower frequencies - isn't accounted for
- * Values above 10⁻⁵ of the quadrupole moment exceed the max strain that a neutron crust can support - physics that is simply not included

Kiranjyot Gill

GWs from long GRBs