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1 Overview

In this document, we show that when the signal recycling cavity is detuned by a small

amount, the DARM response as a function of frequency f can be written in the form of

∂S

∂L−
(f) =

He−2iπfτ

1 + if/fcc

×
(

f 2

f 2 + f 2
s − iffs/Q

)
, (1)

where H, fcc, τ , fs, and Q are the optical gain, DARM coupled cavity pole, time delay,

optical spring frequency, and optical spring Q factor, respectively.

2 Derivation

2.1 Master equation

We start from equation (3.83) of Ward’s thesis [1] for the DARM response. Subsequently,

we will gradually approximate it to a simpler form. The original equation is given in a fairly

complicated form of

∂S

∂L−
(ω) =

ts
[(

1− rse
2iβ
)

cos ζ cosφ−
(
1 + rse

2iβ
)

sin ζ sinφ
]

1 + r2
s e

4iβ − 2rse2iβ
[
cos 2φ+ κ

2
sin 2φ

] √
2Ibs

ω2
0

ω2 (ω2
c + ω2)

, (2)

where

κ =
8Ibs

mL2

ω0

ω2 (ω2
c + ω2)

, (3)

and ts and rs are the transmissivity and reflectivity of the signal recycling mirror, and where

ω, ω0 and ωc are the gravitational wave, laser and single-arm cavity pole angular-frequencies,

and ζ and φ are homodyne and detuning phases, β = −arctan ω
ωc

is the phase delay in the

arm cavity, Ibs, m and L are the laser power on the beam splitter, the mass of the test masses

and the length of the arm cavities. Figure 1 shows the RSE response function with various

detuning settings.

Each test mass is assumed to have the same mass, m and assumed to be a free mass.
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Figure 1: The frequency response of the detuned RSE with various detuning settings. The
following numerical parameters are used to compute the response: ωc = 2π × 45 rad/s;
ts =
√

0.37; rs =
√

1− 0.37; ζ = π/2; m = 40 kg; L = 3994.5 m; Ibs = 1600 W.

2.2 Approximation

According to a first study by Hall et al. [2], it seems that the following approximations can

work.

• 90◦ homodyne phase (ζ → π/2).

• a small detuning in the signal recycling cavity (φ→ π/2 + ∆φ).

Applying the first approximation (ζ → π/2) to equation (2), we obtain

∂S

∂L−
= −

ts
(
1 + rse

2iβ
)

sinφ

1 + r2
s e

4iβ − 2rse2iβ
[
cos 2φ+ κ

2
sin 2φ

]√2Ibs
ω2

0

ω2 (ω2
c + ω2)
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Now, we apply the second approximation (φ→ π/2 + ∆φ) to the last equation,

∂S

∂L−
= −

ts
(
1 + rse

2iβ
)

1 + r2
s e

4iβ + 2rse2iβ [1 + κ∆φ]

√
2Ibs

ω2
0

ω2 (ω2
c + ω2)

.

This equation should be equivalent to the usual single-pole response [3] when there is no

detuning (i.e., ∆φ→ 0).

Our strategy here is to remove the single-pole response by dividing it out of the last equation

and leave the remaining function, M , which is governed by the optical spring effect. The

optical spring effect M can be computed as

M(ω) =
∂S

∂L−

(
∂S

∂L−

∣∣∣∣
∆φ=0

)−1

=
1

1 + Aκ∆φ
,

where A is a complex number defined as A = 2rse
2iβ/

(
1 + r2

s e
4iβ + 2rse

2iβ
)
. Plugging equa-

tion (3) to the last equation, one can rewrite it as

M(ω) =
ω2

ω2 + Z
(ω2

c+ω2)

,

where Z is a complex frequency-dependent number defined as Z = 8AIbsω0∆φ/(mL2). Ac-

cording to the measurements (e.g., [2]) and model (see figure 1), a small detuning slightly

rotates the phase at low frequencies. By looking at the magnitude and phase components of

Z, and assuming a small phase component of Z, we can simplify the detuning function M :

M(ω) =
ω2

ω2 + |Z|eiθ
ω2
c+ω2

(4)

=
ω2

ω2 + |Z| cos θ
ω2
c+ω2 + i|Z| sin θ

ω2
c+ω2

(5)

≈ ω2

ω2 + |Z|
ω2
c+ω2 + i|Z|θ

ω2
c+ω2

(6)

Returning to the defintion of Z, the phase of Z must equal the phase of A. A is a function

of the SRC reflectivity rs and arm cavity phase delay β. The arm cavity phase delay β is
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itself a function of frequency ω:

θ = arg(Z) = arg(A) = 2β = −2 arctan
ω

ωc
(7)

M(ω) ≈ ω2

ω2 + |Z|
ω2
c+ω2 − i 2|Z| arctan (ω/ωc)

ω2
c+ω2

(8)

We now assume that as the frequency ω grows, the condition |Z|/(ω2
c +ω2)� ω2 is satisfied

before the condition ω2
c � ω2 is satisfied. This allows the simplifications (ω2

c + ω2) → ω2
c

and arctan ω
ωc
→ ω

ωc
. Therefore, the optical spring effect can be written

M(ω) =
ω2

ω2 + ω2
s − i ω ωs/Q

(9)

where ωs and Q are a real constants defined by

ω2
s =
|Z|
ω2

c

Q =
ωc
2ωs

(10)

For an anti-spring detuning, ω2
s > 0 whereas it should be ω2

s < 0 for a pro-spring detuning.

In summary, the DARM response with a small signal recycling detuning can be written as

S (f) =
He−2iπfτ

1 + if/fcc

×M(f). (11)

which is what we have showed at the beginning in equation (1).

3 Accuracy

3.1 Full Model vs. Simplified Model

Running numerical simulations, we found that the accuracy of the approximated func-

tion [equation (1)] was good to sub-percent levels in magnitude and sub-degree levels in

phase for a detuning of 0.5 deg.

Figure 2 shows a comparison of the approximated optical spring [equation (9)] and that of

the full form [equation (2)]. An excellent agreement is shown in the figure at an accuracy
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Figure 2: The frequency response of the detuned RSE with various detuning settings. φ =
90.5 deg (or ∆φ = 0.5 deg) is assumed. The other numerical parameters are the same as that
used in figure 1. A best fit for fs was found to be 6.96 Hz, while a best fit for Q was found
at 28.25

level of sub percent in magnitude. Discrepancy in the magnitude above 300 Hz seems to be

due to the cavity pole slightly moved by the detuning.

At higher frequencies our assumptions based on ω2
c � ω2 break down, leading to slight

discrepancies from the full model.

3.2 ER9 Hanford Detuning

The Hanford interferometer plant has been measured twice for Engineering Run 9. Just as

in O1, Hanford is demonstrating detuning at low frequencies. What’s more, it appears the

detuning changes in the days between the two measurements. This is a strong argument for

including a calibration line at low frequencies in the Hanford detector to monitor detuning.

Using the emcee python package, we have fit a model using Equation 1 to both ER9
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Figure 3: The ER9 LHO sensing function measurements from July 1st and July 9th.

measurements separately. The results of the MCMC fits can be seen in Figures 4 and 5.

Note that we fit a parameter called inverse Q for simplicity; inverse Q is allowed to be 0

without blowing up the denominator of equation 1.

The ER9 detuned sensing model changes the parameters significantly. The detuning changes

from lock to lock, as captured by the value of the optical spring frequency fs. The July 1st

fs = 9.97 Hz, but the July 9th fs = 8.30 Hz. These optical spring frequencies correspond to

a detuning phase of ∆φ = 1.03 degrees and ∆φ = 0.71 degrees respectively.

The other parameters see alterations as well. The ER9 LHO coupled cavity pole is 320 Hz

whereas during O1 the nominal LHO coupled cavity pole was 341 Hz. Time delay sees a

15 µsec increase between the July 1st and July 9th ER9 measurements. The optical spring

inverse Q reduces by a factor of 2.7 between the July 1st and July 9th.
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Figure 4: MCMC Fit of the July 1st ER9 LHO sensing function measurement.
Parameter Values:
Optical gain = 9.12e+05 +/- 8.16e+02 [cnts/m]
Cavity pole = 3.23e+02 +/- 5.51e-01 [Hz]
Time delay = 5.46e+00 +/- 3.46e-01 [µsec]
Spring frequency = 9.97e+00 +/- 5.49e-02 [Hz]
Spring Inverse Q = 1.36e-01 +/- 3.52e-03
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Figure 5: MCMC Fit of the July 9th ER9 LHO sensing function measurement.
Parameter Values:
Optical gain = 8.99e+05 +/- 1.09e+03 [cnts/m]
Cavity pole = 3.20e+02 +/- 8.47e-01 [Hz]
Time delay = 2.21e+01 +/- 5.33e-01 [µsec]
Spring frequency = 8.30e+00 +/- 6.15e-02 [Hz]
Spring Inverse Q = 5.10e-02 +/- 6.79e-03
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