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Abstract

So far in scientific history there has not been a single definitive experiment that shows
deviations from the predictions of general relativity (GR). However we know from quantum
field theory that GR as it stands is not renormalizable, so it cannot be the full story. LIGO is
our first shot at probing gravity in the strong field regime. In order to detect agreement with
GR or lack thereof more sensitively, we should generate waveform templates from alternative
theories of gravity. This has not been done yet, but by and large we need some more insight
from numerical relativistic simulations to develop such prescriptions.

For numerous reasons, we expect these more correct alternative theories to be corrections to
GR that have to converge with GR in limiting cases. Therefore it is useful to study spacetimes
that are perturbations of that of GR. In our case, we study perturbations of Kerr black holes,
the unique class of stationary, axisymmetric, charge neutral, regular, and asymptotically-flat
spacetime in GR, with corrections to GR in a theory-independent manner. Our scheme is to
study these so called ”bumpy black holes” in the Weyl-Lewis-Papapetrou gauge, where the four
degrees of freedom of the metric are manifest, and numerically solve for the general class of
black holes in beyond-GR theories.
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1 Introduction to beyond GR theories

1.1 Why corrections to GR?

Consider the statement:
There has not been a single experiment that shows disagreement with general relativity. — (1.1)

One way to proceed from this fact is to be content with our knowledge of gravity, but another
way is to look to investigate this apparent miracle of science.

First of all, the statement is actually not as powerful as one might initially think at a glance.
General relativity (GR) is not the only theory consistent with direct observation. And since in
science we can only disprove theories, the statement is empty except in expressing that we
have not eliminated GR from the list of possible theories.

Furthermore, we know that GR is incomplete as a theory. Due to various incompatibility issues,
GR is not quantizable as a quantum field theory. The details of these incompatibilities are beyond
the scope of this project, but they include the Weinberg-Witten theorem, Lovelock theorem, and
non-renormalizability. In short, GR has to break down at sufficiently high energies. We should
consider ourselves fortunate that GR has explained and predicted as much as it has in our direct
experience so far, but it is not necessarily the be-all and end-all of gravity theories.

However, the success of GR so far does hint at one outlook. Imagine there existed a full (i.e.
UV-complete) theory of gravity that is compatible with quantum mechanics. We expect to be able
to expand the theory around low energies, integrating out high energy degrees of freedom, to yield
an effective field theory (EFT). Because of our century of observations with GR, we expect GR to
be the leading order term in our EFT, with higher order corrections appearing. Treating GR in
this EFT framework we can consider leading order perturbations of GR that become non-negligible
at high energies. There has been many theories of gravity that reduce to GR plus perturbation in
this limit, and modern EFT effort has rich and fruitful categorizing these theories.

With the inception of the first gravitational wave detectors, such as LIGO, we are entering
the era when we can finally probe gravity in the strong field regime and see the agreement with
GR break down. It is exciting times in physics when it is plausible that the next experimentally-
refutable breakthrough of the origins of gravity is around the corner.

General relativity

Figure 1: The dotted line shows an next order EFT of gravity with respect to GR and the standard
model in “theory” space. Diagram courtesy of Leo C. Stein



2 Motivation

2.1 Tests of GR

There are two distinct ways to study theories of gravity: theory-dependently and theory-independently.
Theory-dependent tests are great for statistics and getting detections. We increase our signal-to-
noise we are looking for a specific kind of signal, e.g. matched filtering. However, we would like to
create a framework were we can test a huge class of theories all at once, where each specific theory

is parameterized so that we can better connect observation to new theories.

2.2 Numerical simulation

The broad on-going goal of this project to develop a theory independent framework that could in
principle be applied to virtually all known subleading EFTs of gravity. And for demonstration
purposes and to generate waveforms that could be use for gravitational wave detectors, subsets or
specific theories will be chosen for numerical simulation. We need simulate compact binary merger
in these theories to determine what the characteristics effects of on a distant gravitational wave
detectors. Since waveforms informed by alternative theories of gravity has not been implemented in
the search pipelines of current generation detectors like LIGO and VIRGO, we have good impetus
to create such waveforms.

2.3 Perturbations of GR

To recap, from modern effective field theory principles, we can view alternative theories of gravity
as corrections to GR. This means we can do perturbation theory. Specifically we perform do
perturbation theory on gravity theories. Perturbations of the theory will yield in perturbations of
GR spacetime solutions.

Before embarking on compact binary merger simulations, we focus our project on stationary
and isolated, black holes, where no matter is unmodeled. This is usually represented by the Kerr
solution in GR. The program we are developing from ground up should be generalizable to binary
black holes and systems with modelled matter.

In this project, we study general axisymmetric, stationary perturbations of the Kerr spacetime,
a solution of GR, and develop a formalism for solving perturbations from Kerr. Depending on
your point of view, the perturbations can represent corrections to GR, but they can also represent
matter near the horizons of black holes, known as “bumpy black holes”.

Note here that the perturbed spacetime does not have to be Ricci-flat, a property that most
known analytic black hole solutions in GR have.



3 Setup

3.1 Perturbation theory

We consider a 1-parameter family of spacetime geometries, described by the metric g, with the
parameter €. Expanding around ¢ = 0 for sufficiently small e,

o dg,
ganl€) = 9,5 + e | 1O() (3.1)

(1)
ha,b

e=0)

In our prescription, let gab( be a Ricci-flat geometry like Schwarzschild or Kerr.

A

I
gab(o)

3.2 Theory independent Lagrangian

For example, the action for a general interacting scalar § non-minimally coupled to curvature

I = /d4x\/—g [R — %&198“9 + eLint (3.2)

For example, the interaction can be 8 coupled to the Pontryagin density in dynamical Chern-Simons
theory, Liny = 0 *RR. We picked a scalar field for the sake of numerical simulations, but we can
easily adapt other fields into our formalism.

3.3 Theory independent Equations of Motion

Detailed in later in section we can show that the Einstein tensor, which captures space time
curvature, G is equal to an effective stress energy tensor Tjﬁ, where T(fﬁ = O(€?) and V“Tsf =0.
That is, spacetime curvature is sourced by the energy-momentum of the scalar field and the scalar-
curvature interaction.

Additionally the by varying the action with respect to the scalar field, we will get the 4-
dimensional laplacian acting on the scalar [0 equal to to a source arising from the variation of the
interaction piece of the Lagrangian S = O(e!).

This is a compact way to think about these equations of motion: in a coordinates system called
Lorentz gauge, we can write that the two relevant equations of motion for the metric perturbations
hap and scalar 8 are Ohy, = T(flff and [J0 = S, repsectively.



3.4 Gauge for black holes

In gravity, diffeomorphisms can be thought of as coordinate transformations that leave spacetime
invariant. So while the physics of gravity remains the same, the coordinate freedom is what we call
gauge freedom. We will see in a later section that infinitesimal diffeomorphisms correspond
to the gauge transformation not unlike a spin-2 gauge boson.

While it doesn’t matter which gauge we choose because the physics remains the same, we must
still remain judicious in our choice of gauge. This is because analytical analysis can be greatly
elucidated or obscured depending on the gauge. And numerical analysis can plain converge quickly
or not converge at all due to our choice of gauge. When we are working with spacetimes that can
curve and oscillate, the coordinates can curve and oscillate too, distinguishing between the two is
a subtle task that takes care. Gauge becomes not a convenient redundancy but rather a serious
issue we must consider at every step of this project.

3.5 Black hole spacetimes

For astrophysical blackholes, we can make a few observations that yield simplifying assumptions.
First, conservation of electric charge and the Coulomb force implies that the black hole any charge
in the black hole be canceled by opposite charges streaming in. We can take astrophysical blackholes
to be essentially electrically uncharged. Similarly, conservation of angular momentum implies that
after all the collisions of matter, a black hole settles down into a state with a well defined angular
momentum, and into an axisymmetric state, where there exists an aximuthal direction for which
the black hole can be modeled to be symmetric. Lastly, at late times of the black hole evolution,
we expect all non-stationary parts of the black hole to gravitationally radiate away. So we can
consider stationary black holes for now. In this project, we are, in a sense, considering only steady-
state solutions of black holes in theories that corrections to GR.

Because of these assumptions, we are motivated to put our metrics into Weyl-Lewis-Papapetrou
(WLP) gauge, which includes virtually all stationary, axisymmetric spacetimes. We will explore
this in greater detail, but the line element due to this metric is

ds? = —V(dt — wdep)? + V! (p2d¢2 +e*(dp? + e”dz2)) (3.3)

Note that unlike the Kerr solution in GR, this metric doesn’t have to be Ricci-flat.



4 General Spacetime Results

Despite not requiring any explicit coordinates or gauge, following results will be serve as the fun-
damental language we use for the rest of the project.

4.1 Perturbation Theory

To reiterate, we have

_ (0) dgab )‘2 d2gab 3
ab(A) = A — O(A 4.1
g b( ) ab + d\ N0 + 9 Cl)\2 o + ( ) ( )
)\2
= 9"+ MG + Sh) + 00 (4.2)
where gab(o) is the background Ricci-flat spacetime and hg)) = % s the first order metric
perturbation. B

4.2 Connection on a Background
o

We have the difference of connections, where V™ is compatible with the metric g, c(’\):

(VY = v = Ch e (4.3)
(VY = VI wy = —Cwe (4.4)

where C¢,; is a function of A.

Therefore, from 0 = v?) gab(/\), we have two identities:

C 1 C A A A

= Lt (7000 + 9,05, - 7,0,) (4.5)
1 1

= 590 (0a90” + 0090d” — 0494") = 5390 (009" + Bo9,0"” — 0a9")  (46)

For notational convenience let @a = Va(o) and V, = Va()‘). The Riemann curvature tensor is

Ryptwq = [Va, Viwe (4.7)
=V wac —(a < b) (4.8)

wac Cd dwc wad (a — b) (4.9)

=V (wac — Clwg) — C’ac(wad — Cpywe) — (a <> b) (4.10)

= Vo Vyw %CgcdeJr C4.C¢we — (a < b) (4.11)

= @[ @ b|We — @[acﬁcwd + Cg’[aqf]dwe (4.12)

= (R = ViaCH. + C5.CH ) wa (4.13)

— Rabcd = Rabcd(()) — @[acb]c + Ce[acb}e (414)




4.3 Linearized Einstein Operator

The linearized Einstein operator is the linearized Einstein tensor acting on the space of perturba-
tions. Specifically

GW . 0% [Sym?*(T*M)] — C* [Sym*(T*M)] (4.15)

This operator is possibly a Lichnerowicz operator, but it is unconfirmed. It will be shown in
section that this operator self-adjoint with respect to a natural inner product.
Let @a = Va(o) and gup = ¢ ab(/\) unless otherwise specified.

1 - - .
o= 50" (Vagdb + VoGad — Vdgab) (4.16)
c,” =0 (4.17)
= C5, =0\ (4.18)
1 ~ ~ -
& = 579 (Vahay + Vohoa = Vahay ) + O0) (4.19)
We have
Rape’ = Rup0) = ViaCife + O(N) (4.20)
— R, = R,[” = V,Cj, + O(N) (4.21)
1 L - -
= R, = 529" (VaVihee + VaVehg, = VaVehye — (a0 d)) +O0F)  (4.22)
1 . .- - - -
= Ro = 52 ((Vas Ve + VaVeh = VVelige = VoV, + VaV7lhy, ) + O(0)
(4.23)
1 /-~ - - . -
Rye = Roe® = 52 (vavch — VNV gy + vdvdhac) + O\ (4.24)
where we have V, and hg, raised and lowered (and traced) by the background metric QCd(o)'
Furthermore, we have
R=¢"R,, (4.25)

1 . . -
= (g% — \p*)R, O — 5Agac(O) (V,Nch = VV(ahge + vdvdhac) +0(\?) (4.26)

= RO —\prR, (0 — %A (@Nﬂh —2VeVh,, + @d@dh) +0()\?) (4.27)

R=RO _ ) (h“CRac(O) +VaVih - @C@dhcd) +0()?) (4.28)

Therefore the linearized Einstein tensor is



1

Gap =Rap — iRgab (429)

_r O _Ly (g g _ves 5
=R, = 5A (VaVoh = VoV oy + VaV gy (4.30)

1 . .
— 595" + Moap) [R“” - A (hcdRcd(O) +VVih - VCthcd)] + OO (4.31)
1 1 1, /= = - = .~

:Gab(O) _ iAhabR(O) + §Agab(0)hcdRCd(0) _ 5)\ (VaVbh _ Vev(ahb)g + Vdvdhab> (432)

1 o -
+ 5700 " (h R, + YV = VoV h, ) + OO?) (4.33)

If we have a Ricci-flat background, Rcd(o) =0,

1 /-~ -~ _ _ . _ - _ .
G = =52 (VaVih = VV(aly, + VaV oy = 90" VaVh + 9, O VoV hey) + O0F) | (434)

which agrees with the Fierz-Pauli equation for massless spin-2 bosons in a Minkowski background.
We can also note that AV, = AV, + O(\?), so

1
G = =52 (VaVioh = VV(aly, + VaV oy = 90 VaVh + g0y VT hey ) + OON)  (4.35)

4.4 Gauge conditions
4.4.1 Covariant Derivative Commutator derivation

Given that [@a, @b]wc = -R* (O)wd, we have

cab
[Va, Vol (heav®) = =R, )(hedvd) (4.36)
VaVohev? + W + hegVo Vi — (a3 b) = ‘ ) (hegv™) (4.37)
[Vas Vol heav® + hee[Va, VoJo© = — ( ) (heqv?) (4.38)
[V, Vol heav? + hee RS 1, O v = —Recab(o)hedvd (4.39)

[@aa @b} hea = _Recab(O) hea — Redab(O) Pee
(4.40)
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4.4.2 Lorenz Gauge of the Trace-reverse of Metric Perturbation

In Lorenz gauge, 0 = @“ﬁab = @“hab — % gab@ah in 3 4+ 1 dimensions with a Ricci-flat background

1 /- - L - - L
Gy = —3A (v Voh = VoV (ahyye + VaV ol — 90y VaVh + gabvcvdhcd> + OO (4.41)
L 1
=32 (v Voh = V¥ ahyye + VaV oy = 9o VaVh + 5905V (90aV h)> +O\) (4.42)
1 (e = 1o
= 5)\ <Vav h V V( hb) + Vdv h QQQdevdh> + O()\2) (4.43)
1 /- . - . o
= -5 ( Voh — VeV ohy, — VEVyhy, + vdvdhab) +0(\2) (4.44)
1 /- - . _
=5 (Vavbh — VeV (hbe + gbeh> VeV, (hae + gaeh> RAY hab) + 0N
(4.45)
1 (e e le = e ey
= —5)\ (vavbh - Vevahbe - *va h/ V€Vbh §V Vbh + Vdvdhab> + O()\2) (4.46)
1 N
~ 1 (—vev( e vdvdhab) +O(\2) (4.47)
2
1 -
= =5 ( ([vc,v 1y, + (a < b)) + Dhab> + O\ (4.48)
1 _ ~_
= —3A (—g“ (—Rdbca(o)hde — RO, + (ab) Dhab) + 0O\ (4.49)
1 . (0)- _ .
=5\ (+ (Rdb OR + RO 4 (0o b)) Clhy, ) + O(\%) (4.50)
AT .
Gap = —5A (2R 4 Oh .+ Dhab> +O(N2) (4.51)

Note that for WLP gauge that we choose later, h = 0, 50 hqp = hap-

4.4.3 Infinitesimal Gauge Transformation

We see that infinitesimal diffeomorphism z% +— 2’ ¢ =2 4 k% is equivalent to an infinitesimal
gauge transformation of the metric at linear order:

9™ (x) = ™" (@) (4.52)
o' 92",
a

= 0 o Y (x) (4.53)
= (67 4 0ak") (6} + k") g™ () (4.54)
_ (522'%' + 69 0k + 0,5V + O(ﬁ)) 9% (z) (4.55)
= g% (x) + 0¥ kY + 8" kY + O(K?) (4.56)

Therefore for first order perturbations, h, + h,, + vﬁf’) Kp + Vl()o)ma is a gauge transformation for
arbitrary infinitesimal covector field k,. Note, this is exactly the gauge transformation for spin-2
gauge bosons. We see that for the 10 components of hy,, we have 4 gauge degrees of freedom. The
remaining 6 are 2 propagating degrees of freedom and 4 static components.
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4.5 Decoupling Limit of Scalar field

In the decoupling limit, we have for smalle €, the action for an interacting scalar field (e.g. dynamical

Chern-Simons):

/ d*z/—g

Imposing the principle of stationary action,

0=2461

_/{(W

1
= /d4a:\/—g{—2gab59“b

m?
—LR- 78 000 + €Lint

5 +v—g6

(TS P
TR — 5({909({“) 9 + E;Cint

4 1 ab mg 1 c
= [ d*zv/—g —igabég TR — 58008 0 + €Lint

pR - *8 06(10 + G,Cmt

2

m
+7p53+5

2

2
1 1 1
/d4$\/ 5gab { £ <Rab - gabR> — 5 9ab [—2600809 + 6ACint:|

2 2

1 cd 0 4 (a 0806) 5£int
9 gab (g aceade) =+ (Sgab(eﬁmt)} /d Ty — { 50 00 + € 50
2
1 1 in
_ / /=59 L PGy — = gup | — =000 + eLiny| — 565;53 00,0 + 2Lt
2 2 2 5g
0.00°60 (5£
4 — Y int
+/d 2V g{ 50 60 + 50 59}
1 4 ab 2 1 c 5£1nt
=3 d*x\/—gdg™ { mpGap — 6 00,0 — gaba 00 9 + €Lintgap + 2€ 5q
4 c 6£1nt
+ [ d*z60 < +0°(v/—9gVbh) + e/ —
1 4 ab 2 1 5£1Ht
0= 3 d*x\/—g6g™ { myGap — 8 00,0 — gabﬁ 00° 0 + eLintgap + 2€ 54

+ / d*z/—go0 {+vcvce + e‘;ggﬁ}

Therefore our equations of motion are:

pR - 76 000 4 €Lint

5Acmt

Gab + eLintGab + 26— S
g

= 0,000 — gaba 000

eCup

0o = —

5£int

‘750

S

()
Tab
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(4.57)

(4.58)

(4.59)

{—;aceace + eﬁint} } (4.60)

mp ab 1 C
+ L Radg"" — 50(0.60°6) + 8 [eLin]

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)
(4.66)
(4.67)
(4.68)

(4.69)

(4.70)

(4.71)



We have the perturbative expansion from a Ricci-flat, scalarless background:

0 =0+ + %89(2) +0(e%)

1
Jab = gab(o) + ehab(l) + *EQhab(Q) + (’)(63)

2
Tab((?) = 0()
Rapea = O(1)
Lint = O(€)
S =0(e)
eCup = (’)(62)

1 . d (0= _
Gab = 756 <2R adb(O)hcd(l) + D(O)hab(l)> + 0(62)

So in the decoupling limit of € — 0,

4.5.1 Zeroth Order

Just the Kerr solution with no scalar.

4.5.2 First Order

5L (0)
(0) Ly — _ int
- (69 ) 6< 50 )

8 Line \
©g(1) — _ (Okint
aQF ( o >

and

P~ ab in 5gab
2 ~(1)
m,Go' =0

§Lin (0)
m2GY 4+ 6E~(Ot)g£) + 2¢ < £ t) =0

where a solution is Bcd(l) =0.
4.5.3 Second Order

Now at O(e?) order, assuming Bcd(l) =0,

m

(4.80)

(4.81)

m2G? 4 eL0)gl9 4 2 <5£i“t>(1) — 0, (0V) 0y (c0)) ~ %gg?)ac (0) & (00)  (a85)

5gab
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which reduces to

N 1
G =my? | —eLi)gl) — 2 <55§I}f> + 0,0V, — Zegl a0 oo (4.86)
o 70
5@
1 . _
= gy (2R 000 ) R = 55 (4.87)
4.5.4 Third Order
We need to find 0 to second order in e:
- N®)
00 (e ) =~ (5o (4.83)
2 in (2)
0y - <5§ . t) (4.89)

Then we have to O(e3) order, assuming Bcd(l) =0,

RN
GW =m? | —eLl)g) — 2¢ (‘mm) 5 (000,07 + 0,020,00) — g o.0V 00 )

int 59(11)
—eCi? Ti?
S
(4.90)
1 . _
= —5a) (2r°,%, 0 + 02000 1, = 55 (4.91)

4.5.5 Observation

We see as expected, the part of each order of G acting on the solely the highest derivative of
the metric is always an operator of the form 2Rcadb(0) + 526,‘)1D(0). This comes from the product of
the perturbation expansion always has the same form for terms that have a single combinatorial
contribution.
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4.6 Inner Product Space of Perturbations

A natural first attempt at an inner product of pup, ¢.q in the space of first order stationary, axisym-
mmetric perturbations of a background metric gc(bg) is

(p,q) = / p“"qab\/%d‘*x (4.92)
.0 = [ o [ punsts o) aca TP (4.93)

where raising and lowering is done by the background metric. Note that in equation (4.93) is only
true for stationary, axisymmetric, metrics. The ¢ and ¢ integrals are always the same for all pg
and ¢.4, SO we can factor it out of all inner products.

4.6.1 Trace-reverse and the Inner Product

. — 0 0
As a reminder, p,, = pap, because (pab — agéb)p) flg((lb) (p — %géﬁg&%p) = pgp and that

2 2
PG = (p“b - dg?é’)p) <Qab - dgfl?,)q) (4.94)
. 2 2 490
=" — p0 — Spa+ - %pq (4.95)
="’ qas (4.96)
= (p.¢) = (D, q) (4.97)

4.6.2 Self-Adjointness of the Linearized Einstein Operator
Reading off the form of the linearized Einstein operator G in Lorenz gauge from eq. 1 ,

(p.GV[q] / d'z. /90 p™*GV]q (4.98)

= / d'z. /50 P (2Rcadb(0) + 65880 Gea (4.99)
/ d'z /90 (QR“cbd(o Pabi *d+pcdD(“>ch) (4.100)
/f%f@mgmmq+wm@ ) (4.101)

= /d%@ (2Rac d( )ﬁaqudJFﬁCdD(O)ch) (4.102)

where the last step is because we have a Ricci-flat background, so Rac d( ) ((12) =0= Racbd( g g( 0)°

And in general, we see that the trace-reverse operator commutes with G(1), i.e. for all ¢, GM[g] =
GW[g).
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Examining the second term of the integral, we integrate by parts twice and make use of the use

the identity (A.18]),
/ d*z. /9(0) P VaVeq = / Az /9(0) Va0V Geq) — / d*z/9(0) VaD“'Veq (4.103)

- / d*z o PV ) — / d*z. /90y VaP™ Ve (4.104)
— [ /5w T T + [ dte g VT (1203
— / d*z 9, 5V qea) + / d*z/90) V*VaP“qed (4.106)

Therefore, we have

(p,GWIq]) = / d*z . /90, (2R“de<0> +5gagm<0>)pachd (4.107)
= /d4x‘ /9(0) G(l)[p]qucd (4.108)
= (GY[p],q) (4.100)

The operator GV is self-adjoint with respect to this inner product.

4.7 Bianchi Identity
4.7.1 General Connections

Baez and Muniain[I] outline an elegant proof of the Bianchi identity, reproduced here in detail.
We will use the the Bianchi identity to show the geometric origin of the divergencelessness of the
Einstein tensor and all possible source terms.

Given a fiber bundle 7 : E — M and a connection D on M, for any E-valued form n = s; ® w!
on M., in local coordinates,

d%n =dp (Dysp @ da” A de) (4.110)
= D,Dy,s; @ dz" A da¥ A da! (4.111)

1
=3 [D,,, D] sy @ dat A dx” A da’ (4.112)

1
= §F;w31 @ dat A da” A da! (4.113)
=FAq (4.114)

Note that the exterior covariant derivative doesn’t form a de Rham cohomology where d? =
because the covariant derivative is not commutative, unlike the partial derivative. The failure to
commute is the geometric curvature.
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Therefore,

dpn = dp(dpn) (4.115)
=dpF An+F ANdpn (4.117)
dpn = dp(dpn) (4.118)
= F Adpn (4.119)
— [dpF =0 (1120
In local coordinates,
1
0=dpFAn=dp <2Fuy®dx“/\dx”> A (sp®da') (4.121)
1
= 5(DaFuw) @ dz* Adat Ada” A (s; @ Ada!) (4.122)
1
= §(D>\FW)81 ® dz? A dat A da? A dat (4.123)
1
= 5 (D (Fuws1) = Fuw (Das) @ dz? A da? A da” A da! (4.124)
1
= i[D)” F)sr @ da* Ada A da? A da! (4.125)
11
=5 5 ((Dx B ] + [Dys Fop] + (Do, Fa]) 51 ® dz? A da? Ada” Adz! (4.126)
= 0= [Dx, Fu]+ [Dy, Fo)] + [Dy, Fyl (4.127)
0= [Dx; [Dy; Du]l + [Dys [Dyy DA]l + [Dy, [Dy, Dy]] (4.128)

which is in the form of the Jacobi identity.

4.7.2 With Riemann curvature
For our Levi-Civita connection V compatible with metric g, we have the curvature
R(u,v)w = ([Vu, Vo] = Viyu)) w, (4.129)

which is just the curvature of the connection V.

0= [u, [v,w]] + [v, [w,u]] + [w, [u, v]] (4.130)
= Vu[v,w] = V[ wu + (vow cyc) (4.131)
= Vu(Vyw — Vyv) = Vi yu + (uvw cyc) (4.132)
= [Vu, Vyw — V[, w + (uvw cyc) (4.133)

0= R(Vy, Vy)w + (uvw cyc) (4.134)

(4.135)
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Specifically, the Riemann curvature tensor is R%, ;6. = R(Vs, Vi)eq. Choose u = 0,,v = Op, w = O
to be coordinate basis vector fields.

= 0= R(Va, V)0 + R(V,Ve)0q + R(Ve, V)0 (4.136)
— 0= R%,, + (abc cyc) (4.137)

From eq. (4.128)) applied to the Levi-Civita connection,

0=1[Va, [Ve, V|| + [V, [Ve, Va]] + [Ve, [Va, V] (4.139)

= [Va, R(Vy, Ve)leq + (abe cyc) (4.140)

= VR eq€e — RN Gaa + (abe cyc) (4.141)

= 0= VR, .q+ (abc cyc) ( )
= 0=VaR, g, + Vol g, + (abc cyc) (4.143)

where we use eq. (4.137) in the last step.
Contracting with the metric twice,

0= g% (VYeRog + VaR g + (abe cyc)) (4.144)

0=—VaRy + VsRyy + VR (4.145)

0=g"" (=VaRy + VsRyy + V°Reogup) (4.146)

0=-V.R+ VR, + V°R,, (4.147)

— 0=V?(2R4y — gaaR) (4.148)
2G4,

— |0 = V4Gy, (4.149)
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5 Analytical Results

The following are metric dependent results and lead us into Weyl-Lewis-Papaterou black hole
spacetime that we are considering for this project.

5.1 Birkhoff’s Theorem

Here is a nice (full) proof of Birkhoff’s theorem. The main idea comes from Eric Poisson.[2]

5.1.1 Spherical Symmetry

Assuming a spherically symmetric 3 + 1 dimensional spacetime, we can choose coordinates so that
the metric has the general form:

ds* = A(t,r)dt? + B(t,r)dt dr + C(t,r)dr® + D(t,r)dQ? (5.1)

We can transform our coordinates (,7) so that r becomes v/D. We choose the positive root
because we want the angular coordinates to have positive Lorentzian signature (If we choose the
negative convention our final metric change to reflect the convention change). Therefore we can
always rewrite our spherically symmetric metric as

ds®> = A(t,r)dt® + B(t,r)dt dr + C(t,r)dr® + r2dQ? (5.2)

2 areal dependence

where we have chosen the coordinate r specifically to give the spatial 2-sphere an r
in the 4-fold.
Given any A(t,r), B(t,r),C(t,r), we can transform the ¢ coordinates so that our new coordi-

nates, ¢'(t,7) and r, gives

/ /
dt”? = (atdt + atdr) (5.3)
dt? = at/ L LA (5.4)
- ot or a) @ '

D) (gﬁ;) = A(t,r) (5.5)
it (2220 ~ e 50

E(t,r) - D(,r) (gﬁ) = O(t,r) (5.7)

Since we have three equations for three variables ¢'(¢,7), D (¢'(t,r),r), E (t'(t,r),r), the equations
are always soluble up given initial conditions. The choice of initial conditions is part of the gauge
choice of our coordinate system. Then the line element is

ds? = D(t,r)dt* + E(t,r)dr? + r*dQ? (5.8)

We see that we have two functional degrees of freedom assuming spherical symmetry. Once the
vacuum Einstein Field Equations are imposed, we will see that only a real valued parameter will
remain as a degree of freedom.
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5.1.2 Vacuum Einstein Field Equations

In regions where D and E do not blow up or go to 0, we can renaming our metric degrees of
freedom, in two steps:

1

ds® = =& (¢, r)dt? + dr? + r2d0? 5.9
(t,7) ) (5.9)
2 2 !
s = —en) (12 20D gy (12 2RID) g2 g g (5.10)
In complete vacuum 7%, = 0, we have that for the Einstein tensor G", with the help of
Mathematica,
20,m(t,r)

_ it T y
0=\ = —"3 (5.11)

. 20im(t,r)
0=G, = . (5.12)

2 2m(t

0=G", -G, = (1 - mir)) ab(t, r) (5.13)

By equation (5.11)), m(t,r) = m(t) and by equation (5.12)), m(¢t,r) = m(r). Therefore m(t,r) is a
real constant.
Now by equation (5.13)), we have ¥ (t,r) = ¥(t).
We can then rescale t — e"z’(t)t, so that gy = — (1 — QTm)
the same.

Therefore the unique spherically symmetric solution to the vacuum Einstein Field equations
with A = 0 is the Schwarzschild solution:

and all other metric components stay

—1
ds® = — <1 - 2;“) dt® + (1 - 2;”) dr® + r2dQ? (5.14)

for some coordinates with the — + 4+ Lorentzian signature.
Notice we see that any spherically symmetric solution must be asymptotically flat (as r — o0)
and static (with respect to the time-like vector %); we did not impose these conditions.
Therefore, there is no gravitational monopole radiation.

5.1.3 Komar Mass

It turns out the Komar mass integral of the Schwarzschild solution is m, so m really does correspond
to a physical mass of the metric.

5.2 Weyl-Lewis-Papapetrou

We would like to do something like Birkhoff’s theorem and the Schwarzchild solution, but for
axisymmetric spacetimes not spherically-symmetric spacetimes. Birkhoff’s theorem does not exist
for axisymmetric spacetimes, but we can find the unique stationary axisymmetric metric: Weyl-
Lewis-Papapetrou (WLP). WLP is our gauge of choice for most of our analytical analysis. In order
to prove its uniqueness we need a little machinery called Frobenius’ Theorem.
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5.2.1 Frobenius’ Theorem

There are a few equivalent statements of Frobenius’ Theorem; while the differential form version
is nice, we use the vector field form for our current purposes. Frobenius’ Theorem is useful not
only for the proof of uniqueness of the WLP metric, but also will be used to show the integrability
conditions for the solution to the Einstein Field Equations under a WLP metric.

Without introducing to many definitions, the theorem is roughly

Theorem 5.1 In order to have a smooth sub-manifold of M that has tangent spaces coinciding
with a tangent sub-bundle W C E over M, it is necessary and sufficient for W to be involute, i.e.
VX® Y e W [ X, Y]*eW.

Therefore we have the following corollary:

Corollary 5.1.1 If vector fields X and Y* commute, with either vanishing at a point, and
XRxv) =0 =vR,byexd, (5.15)
then the 2-fold orthogonal to X® and Y% are integrable.

The proofs are outlined in Wald[3], and may be reproduced here at a later time.

5.2.2 Proof of WLP

a
Given a time-like (%)a and an “azimuthal” space-like ((%) Killing vector fields for stationary

axisymmetric 1 + 3 dimensional spacetimes. Assuming these satisfy corollary the span of the
other vector fields generated by the other two coordinates (z2 and x3) are orthogonal to 0f and
95 (The first condition of corollary is trivial, but for the second there is a possible argument
based on t- and ¢-reversal symmetry, but further investigation is needed.)

ds® = V(z2, J}g)dt2 + 2W (z2, x3)dtdp + X (x2, :Ug)d¢2 + gij(z2, xg)d:cidxj (5.16)

for i,j € {2,3}. In block matrix form, the metric is

-V W 0 0

w X 0 0
. 5.17
Jab 0 0 goo 923 (5.17)

0 0 go3 gs3

Note that there are six distinct functions of x5 and x3.
We choose 2 = p = VX + W2, which is the negative of determinant of the upper 2 x 2 block.
And choose x3 = z be such that V,pV%z = 0. Redefining variables, we must have

ds? = =V (dt — wdp)® + V1p%d¢? + O (dp* 4+ Ad2?) (5.18)

where w = W/V, Q% = goo, and A = g33/Q2.

The four functional degrees of freedom are V (p, z), w(p, 2), 2(p, 2), A(p, 2).

We have made a gauge transformation to the unique Weyl-Lewis-Papapetrou coordinates for
any stationary, axisymmetric spacetime, up to univariate scaling of z.
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5.3 Schwarzschild in Weyl-Lewis-Papapetrou
5.3.1 Schwarzschild Background

We want to describe spacetimes in with a Schwarzschild background. Therefore we expect there
to exist V = Vo + 6V, w = wo + dw,Q = Qo + 6Q, A = Ag + A, where the variables with the
naught-subscripts describe Schwarzschild background metric, and the § variables are perturbations
that keep the metric stationary and axisymmetric. Let’s solve for the Schwarzschild solution only
in terms of the background first, with no perturbations; we need to get the metric into the form:

ds* = —Vo(dt — wodp)? + Vy L p2de® + Q2(dp? + Aod2?) (5.19)

Note that at the end of our calculation, we expect to choose coordinates so that Ay = 1 because
Schwarzschild is Ricci-flat.

5.3.2 Motivation of WLP Coordinates

By Birkhoff’s Theorem, the Schwarzschild metric (5.14]) is axisymmetric and stationary (in fact it
is static):

2 om\ !
ds® — — (1 _ m) i + <1 - m> dr? + r2(d6? + sin? 0d¢?) (5.20)
T T

Therefore we should be able to write the metric in Weyl-Lewis-Papapetrou form.

We keep the time and azimuthal directions the same, as it is natural to pick % and % as our
Killing vector fields. Therefore were are transforming the spatial coordinates r and 6 only, from
those that are spherically symmetric to those cylindrically symmetric.

We identify that Vj =1 — 277“ and wg = 0, so our metric is in the form:

ds? = —Vo(dt — wodg)* + Vg tdr® + r?(d6* + sin® 0dp?) (5.21)

We see that the standard spherical to cylindrical (rsinf — p, r cos @ — z) will not suffice because
the only d¢? term in the line element will be 72 sin? #d¢? — p2d¢?, and in the WLP form, we need
Vb_l p?d¢?. Thus, we make our transformation Vol/ 2rsing p, so that r2sin? 8d¢? — VO_1 p2do?.

Our transformation is so far defined by

p= V01/2r sinf = v/r2 — 2mrsin 0 (5.22)

_— dp = % sin Odr + %1/27“ cos 0 db (523)
Vil ——
p

We see that p = %1/27, cos 0 is the trigonometric conjugate of p = V01/2r sinf (i.e. p2+p? = Vor?).
And with a clever definition of z, we have

z = (r —m)cosf (5.24)
= dz = cosfdr — (r —m)sinédf (5.25)
ﬁ—/

where Z = (r — m)sin 6 is the trignometric conjugate of z = (r — m) cos 6.
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We see a good sign that 1/2 appears in and ~ appears in ((5.25]).
O

So with this transformation:

t=1

p= Vol/zrsine =12 —2mrsinf

z=(r—m)cosé

p=9¢

we have

dt = dt
dp = V(;l/zr_lédr + pdz
dz =V 2 pdr — 2d6
d¢ = do

1/2

Therefore, we have in terms of the auxiliary variables p =V},

= Zdp+pdz =V 1/2 r (22 + p)dr

L2
—|dr = 0+ ;2 (Zdp + pdz)

22

— pdp — 2dz = (32 + p°)db

1 . -
— de = 2 1 =2 (pdp — Zdz)

224+

Substituting into the metric,

2
ds? = —Vo(dt — wodp)? + Vy~ 1,02d¢2+/074/ V 5 (Zdp + pdz)” +

)’ (224 p%)?

ds® = —Vp(dt — wodg)? + Vg ' p2dg? + e ﬁz)z ((ZZ+477)dp* + (2+7)d2?)

~2:_ﬁ2(dp24‘dz2)

[\

ds? = —Vo(dt — wodp)? + Vi ' p?de* +

We see that we’ve chosen z correctly so that Ag = 1 and

9 T‘2 7,2

0T RyR (r2 — 2mr + m?2)sin? 0 + (r2 — 2mr) cos? 0

r2

(r2 — 2mr) + m2sin? @

Therefore we have for the Schwarzschild background

ds? = —Vo(dt — wodg)? + Vy ' p2ded? + QF (dp? + Aod2?)

23

2 (pdp — 2d2)?

5.26

5.27
5.28
5.29

~—~~ I~ —~
~— ~— ~— ~—

5.30
5.31

5.32

)
)
)
5.33)

(
(
(
(

rcosf and Z = (r — m)siné,

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)



So our Weyl-Lewis-Papapetrou functional degrees of freedom are, as functions (r, 6),

V= (1 - 2:”) +oV (5.44)
w =0+ 0w (5.45)
0% = r2 + 602 (5.46)
~ (r2 —2mr) + m2sin® 0 .
A=1+6A (5.47)

5.3.3 Coordinate Singularities of Background Schwarzschild

Despite the curvature singularity at r = 0, we have coordinate singularities when Q3 — oo, i.e.

0 =7r?—2mr +m?*sin0 (5.48)

0= (r —m)?—m?cos®0 (5.49)

0= (r—m+mecos@)(r —m —mecos@) (5.50)
R, R

With the auxiliary variables R4, we rewrite our WLP functions with the substitution r = %(R+ +
R_ +2m):

R+ + R_—2m
V= oV 5.51
R+ +R_ +2m * ( )
w =0+ dw (5.52)
Ry + R_ +2m)?

o = U 50 5.
IR R + (5.53)
A=1+40A (5.54)
p? 4+ 22 = (r? — 2mr)sin® 0 + (r — m)% cos® 6 (5.55)
= (r —m)%? + m?cos® 6 — m? (5.56)
= (r—m=+mcosf)? —m*F2(r —m)mcosf (5.57)
= R% —m?F 2mz (5.58)
— p*+ (z£m)* = R2 (5.59)
— | Ry = \/p? + (2 £ m)? (5.60)

and thus our WLP functions are now functions of (p, 2).

The coordinate singularities corresponding to R4+ = 0 are now at (p, 2) = (0, £m) for all ¢t and
¢.

We also have a coordinate singularity when p — 0, so all the coordinate singularities are at the
line p = 0 in the spacetime, which includes the (p, z) = (0, £m) singularity as well.
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5.4 Mathematica for perturbations of Kerr and Schwarzschild

I was able to calculate the Einstein operator in WLP coordinates for both Kerr and Schwarzschild
backgrounds. The Kerr solution in WLP form I used are from Jones and Wang[4]. The solutions
with the explicit coordinates are too long to reproduce here in the progress report, but are included
in the companion Mathematica files on the DCC.

There were many facts about WLP computed in Mathematica. One observation is that hg
traceless in WLP. However WLP is confirmed to not be a Lorenz gauge. Furthermore, WLP does
not seem to be obviously in a form of a generalized Harmonic gauge, but future analysis is needed.

5.5 The action of Einstein operator in WLP gauge: Ricci-flat

[This part was quite difficult, even for with the Ricci-flat simplification. The manipulations here
are not referenced anywhere and it took a lot of sweat and trial and error to get the following
result.

5.5.1 Constraint equations

From G, = 0, we have ostensibly 6 non-zero equations of motion, which correspond to Ggg, Gos, G33
and G11,G12, G2z.
From the first three, we can construct the combinations

ey ((V_2 — ,0_2w2) Goo + 627p_2w2) Gs3 = v (V‘lﬁV + p_2V2w§w> (5.61)
627,072 (wGoo + Go3) = v (p72v26w> (5.62)

where V is the gradient under the flat metric ds®> = p?d¢? + dp® + dz?, not ds®> = ggda®da®
We have Goo = G03 = G33 =0 if and only if

0=V- (V—lﬁv + p—2v2wﬁw) (5.63)
0=V- (p*2v2€w) (5.64)
and the Bianchi identity VG, = 0 is satisfied.
Furthermore, we have G11 = —G2o automatically, so we are left with
0= —Ghi = Gy = ﬁ (B,V) — (8.V)?) sz (B,w)? — (B,w)?) — 8;] (5.65)
0= =21 - L 00)0:v) + @) 0:) (5.66)

2 2V2 2p2

which are compatible because given egs. (5.63) and (5.64)), 0,0.y = 0.0, is true.
We have shown that there are 4 equations (2 of which are compatible) consistent with 3 metric

variables in the Ricci-flat case.

5.6 Non-Ricci-flat Perturbations of Ricci-flat Background
Since we know Gy, = T(g) + eTé;) + O(€?) and T(g) = 0, for sake of brevity, we use the notation

a a
Ty = TCE;), so that for the order €' term, GEL? = Tup.
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5.7 Linearized Einstein Field Equations of WLP perturbations
5.8 z Gauge Fixing
5.8.1 z~ f(z2)

We have a remaining gauge freedom in WLP, z — f(z) keeps the metric in WLP form. We need
to fix the gauge completely to perform explicit numerical calculations. The map z — f(z) changes
the WLP metric by

ds? = — V(dt — wdg)? + V! (p2d¢2 + e (dp? + e’”dz?)) (5.67)
s — V(dt — wde)? + VL (p2d¢2 +€27(dp? + 2 (8, f)° sz)) (5.68)
= —V(dt —wdp)* + V1 <p2d¢2 + €2V (dp? + 2P Hog 8Zf)dz2)) (5.69)

So the gauge freedom is

A=A +logd, f (5.70)
— A+ 0N > g+ e+ 1ogd, f (5.71)

We first fix our gauge so that Ao = 0, so the remaining gauge freedom is, for any function G(z)
that is O(e),

N =6\ +log 0, f (5.72)
02 f
0.6\ —0,0\ + 9. f

—~

G(z)

(5.73)

which means once we fix our gauge with G(z) completely we have the condition that
0.0\ + G(z) = H(p, 2) (5.74)

for an a priori unknown function H(p, 2)
From the six original linearized EFEs, and imposing the background Wald equations we have

8p5)\ = p(TH — TQQ) (575)
— 826,)5)\ = paz(TH — TQQ) (5.76)

Taking the p partial derivative of eq. (5.74)) yields,

8,0.6\ = 0,H (5.77)
- 8,,H = paZ(Tn — TQQ) (5.78)

Assuming H(p = R, z) = 0, for some R (which could be co, we have
o
. H(p,2) = / P9 (Tia (9, 2) — Toalpl, 2)) dif + O(2) (5.79)
R
for some arbitrary constant C(z).
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But this C(z) degree of ambiguity for H(p, z) is exactly the gauge degree of freedom G(z) in
eq. (5.74)! Therefore, we have

P -
9.6\ / P, (Tui (s 2) — Toalp, 2)) dpf + O(2) (5.80)
R

where C(z) = C(z) — G(2). )
For our numerical purposes, we can just set C'(z) = 0 to completely fix our z gauge degree of
freedom.

5.8.2 Flat Laplacian of §\

Therefore we have explicitly, 9,0\ and 0.6, so we can construct the flat laplacian of A under the
metric ds? = pd¢? + dp? + dz?,

) p
VQ(S)\ = <63 + ;p + az) o\ = / plaz (Tll(p,a Z) + ng(p,, Z)) dp, + pap (Tll + T22) + 2(T11 + T22)
(5.81)
along with the flat laplacians of §V, dw, and 6y we found earlier.
5.9 Dynamical Chern-Simons
5.9.1 Equations of Motion
With € coupled to the Pontryagin density, the equations of motion are
1
Gap + €Cop = 0,00,0 — igabaceace (5.82)
1 1
ViVl = ——€" RR = ——é€gof R, RO (5.83)

16 16

where using Mathematica and xTensor,

1 c c c
Cap = g [_eebdevaVfRacde -V HebcefvdRadef - vdv eRacefﬁbdef -V eebdefvaacde] + (a’ g b)

(5.84)
5.9.2 Over a Kerr background
With the Kerr solution as the background, i.e. géob), we have
0©g = —e*RORO) (5.85)
~ g6(Gar B GQQ(TQ —Sau) (5.86)

where the second line is from [5], in rationalized Boyer-Lindquist coordinates.
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6 Numerical Results/Setup

6.1 Linearized equations

Despite the redundancies in G, = Taelff , from section we can now cast the linearized equations
into the form

% oV

A ow =Ay ow + lower order terms = source (6.1)
0y oy
P P

where Ay is the induced 3-Laplacian of the Kerr background. The problem is now manifestly
elliptic and well-posed. We can invert Ag numerically, so in principle an iterative scheme can invert
A.

6.2 Newton-Raphson method

Given this form, we use an iterative scheme to solve for these four metric variables in A7 = S

initial guess: Aoty = So

ATy 4 00) = S
Aty + Agdv = ,S_"
— AST~ S — Aty
iteratively solve: | 7 =~ Aal (g— A_'(])

/

This scheme is a generalization of Newton’s method for root finding that we all know and love
from elementary calculus.
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6.3 Maximum Principle

We use the maximum principle to check a sign in our iterative scheme, to make sure it has a chance
of converging,

Theorem 6.1 Given a Laplacian D?, and the differential equation of u of the form D*u = fu for
some function f <0 at all points, u cannot have a maximum in the interior of the domain.

If u has a maximum at &, on the interior of the domain then D?u(Z,) < 0 at some point the
open neighborhood around #,. But then fu > 0 at that point in the neighborhood around Z.,.
Contradiction.

Therefore, we need to make sure that f is not non-negative at all points in order to maximize
u on the domain. In fact, in our application of this theorem f < 0 for all points.

6.4 Transformation to Rational-Polynomial Boyer-Lindquist Coordinates

Because we want to invert using the numerical scheme, and since Ay is invertible in Boyer-Lindquist
analytically, we convert our differential equations into Boyer-Lindquist to complete the Newton-
Raphson method. We can show that for a A\yg = 0, a Ricci-flat background, the background scalar
laplacian is

_ 1 1
Vhnes = Voe 7 (02 + 10, 02) f(p.) = £ (0,00, + 0,1~ #2)9,) Flr) = VhuS  (62)

So the principle part of the differential equations will remain exactly the same, with no extraneous
lower order terms.

6.5 Loss of Gauge after Boyer-Lindquist Transformation

A preliminary result is the loss of the z gauge freedom once we transform into the Boyer-Lindquist
coordinates.

6.6 Demonstration Model

We use non-minimally coupled scalar to the Pontryagin-Chern density, *RR = —%eadeRabe chdef ,
over a Kerr background.
From eq. 1) we have the equation (with the conventional coupling factor of % from [5])

1 e
—eabedg@ RO (6.3)

OO
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7 Challenges

e Check if ADM equations are automatically satisfied or need to be constrained during the
numerical evolution.

e Invert Linearized equation
e Relaxation code and numerics

e boundary conditions, and compactifying coordinates to bring in infinity.

29



8 Summary

We have made much progress so far this summer in analyzing black holes of alternative gravity
theories. The analytics is mostly complete. However there are a few unresolved stumbling blocks
with the numerics that prevent us from fully simulating these black holes.

The current goals are to finish simulating these black holes in dynamical Chern-Simons. Then
apply the method to Einstein-dilaton-Gauss-Bonnet gravity. If a possible analytic inversion of A
can be found then our method would drastically be simplified.

After this, we hope to implement the formalism directly in the Spectral Einstein Code (SpEC),
and compute physically interesting quantities of these black holes, e.g. the thermodynamic en-
tropy, the innermost stable circular orbit (ISCO), orbital frequencies, and the locations of the new
horizons.

In the long term, we hope to work on non-stationary perturbations, looking at the quasi-normal
modes of these black holes, computing solutions for binary black holes and their coalescences with
these corrections to GR. Hopefully with these, we can generate gravitational waveforms at infinity
and inform search pipelines of the gravitational wave detectors.

9 Acknowledgements

I would like to thank Leo C. Stein for being a great mentor on this project. I have learned much
from him so far. I thank Vijay Varma, Mark Scheel, Kevin Barkett, and other members of Caltech
TAPIR for technical and emotional support on this project. The TAPIR group meetings were very
useful for an aspiring scientist looking to work in gravity.

I also thank Alan Weinstein and all the members of LIGO at Caltech, Livingston, and Hanford
for their organization for this wonderful summer fellowship. And I would like Caltech and NSF for
their funding of my SURF this summer of 2016.

30



Appendices

A Miscellaneous Identities Used in Proofs

A.0.1 Metric
b 8 aa’ bV o aa’ L O ' OGarty
97 _ 09" 9" guv) _ 09" w4 0097 o D90y
8gcd 8gcd 8.gcd a.gc 8gcd
b/
_ 00" g 00 s o g g
© 09ed ¢ 09ea Al
— agab agb 4 g% bd ( ) )
agcd 8gcd g9
o ab e
— 89 = —gaeghd
ed
A.0.2 Jacobi Formula
For a generic derivative operator 9, one can show the following two facts:
logdet A = trlog A (A.2)
d
OtrF(A) =tr | —F(A)0A (A.3)
dA

Then one can prove:

m@detfl = Ologdet A = Jtrlog A

= d log AOA
dA %%
=tr (A7'0A) (A.4)

Odet A = det Atr (A_IOA)

= —det Atr (A(—A7?)0A)

ddet A= —det Atr (A0(A™1))

A.0.3 Metric Density

Let g = det[g,,] in this context. We use our result from (A.4). For variational derivatives w.r.t. to

the inverse metric,

99 = —ggwég“” |

5y=g =

x (=dg)

2r

5\/j = - 5\/?gguufsguy
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For partial derivatives,

99 = 990 9ba

1
O/ = 57==0(~0)

1
OiV/—g = 5\/—799‘1(7@'9(11)

A.0.4 Connection Coefficients

) 1 ia
Ly = 59 (0sgaj + 0jGia — Dutii)

1 .
= §gza 'iGia
. 1
ng = %83‘9
or | I = L(‘3~\/—g
1] \/jg J
ki L ik e
g ij = 59 g (ajgak + 8kgja - aagjk)
o 1 ., .
= ¢"*4"0; g — 59‘7kgm Gk
) . ) A 1 . .
= 045" Gha) — 97°0;9" 9ka — 599" Dagj
1 ) 1 )
= ———=V=909" = =90V ~yg
_g a \/jg a
iy 1 ‘
k _
g’ F;k = _ﬁaa (\/jggw)
A.0.5 Covariant Derivatives
Vﬂ)i = 8,-1;" + Fﬁjvj
1 . 1 )
= 7Tg\/ —g@wl + 7Tgaj\/jgv]
4 1 ,
Vo' = <=0, (y/=g0')
, 1 ,
— |ViV'o = (/50"
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(A.6)

(A.10)

(A.11)
(A.12)
(A.13)

(A.14)

(A.15)

(A.16)
(A.17)

(A.18)

(A.19)



As a consistency check, we do the divergence of a covector field:

9Vw;j = g w; — giijjwk (A.20)
1 i’ 1 4
— V=997 0iw; — ——08;(v/=gg"Fwy, A.21
Ne i = i( ) (A.21)
. 1 B}
Viw; = —0;(v/—99" w, (A.22
? \/—79 ( ]) )
which agrees with (A.18)
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