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Abstract

So far in scientific history there has not been a single definitive experiment that shows
deviations from the predictions of general relativity (GR). However we know from quantum
field theory that GR as it stands is not renormalizable, so it cannot be the full story. LIGO is
our first shot at probing gravity in the strong field regime. In order to detect agreement with
GR or lack thereof more sensitively, we should generate waveform templates from alternative
theories of gravity. This has not been done yet, but by and large we need some more insight
from numerical relativistic simulations to develop such prescriptions.

For numerous reasons, we expect these more correct alternative theories to be corrections to
GR that have to converge with GR in limiting cases. Therefore it is useful to study spacetimes
that are perturbations of that of GR. In our case, we study perturbations of Kerr black holes,
the unique class of stationary, axisymmetric, charge neutral, regular, and asymptotically-flat
spacetime in GR, with corrections to GR in a theory-independent manner. Our scheme is to
study these so called ”bumpy black holes” in the Weyl-Lewis-Papapetrou gauge, where the four
degrees of freedom of the metric are manifest, and numerically solve for the general class of
black holes in beyond-GR theories.
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1 Introduction to beyond GR theories

1.1 Why corrections to GR?

Consider the statement:

There has not been a single experiment that shows disagreement with general relativity. (1.1)

One way to proceed from this fact is to be content with our knowledge of gravity, but another
way is to look to investigate this apparent miracle of science.

First of all, the statement is actually not as powerful as one might initially think at a glance.
General relativity (GR) is not the only theory consistent with direct observation. And since in
science we can only disprove theories, the statement (1.1) is empty except in expressing that we
have not eliminated GR from the list of possible theories.

Furthermore, we know that GR is incomplete as a theory. Due to various incompatibility issues,
GR is not quantizable as a quantum field theory. The details of these incompatibilities are beyond
the scope of this project, but they include the Weinberg-Witten theorem, Lovelock theorem, and
non-renormalizability. In short, GR has to break down at sufficiently high energies. We should
consider ourselves fortunate that GR has explained and predicted as much as it has in our direct
experience so far, but it is not necessarily the be-all and end-all of gravity theories.

However, the success of GR so far does hint at one outlook. Imagine there existed a full (i.e.
UV-complete) theory of gravity that is compatible with quantum mechanics. We expect to be able
to expand the theory around low energies, integrating out high energy degrees of freedom, to yield
an effective field theory (EFT). Because of our century of observations with GR, we expect GR to
be the leading order term in our EFT, with higher order corrections appearing. Treating GR in
this EFT framework we can consider leading order perturbations of GR that become non-negligible
at high energies. There has been many theories of gravity that reduce to GR plus perturbation in
this limit, and modern EFT effort has rich and fruitful categorizing these theories.

With the inception of the first gravitational wave detectors, such as LIGO, we are entering
the era when we can finally probe gravity in the strong field regime and see the agreement with
GR break down. It is exciting times in physics when it is plausible that the next experimentally-
refutable breakthrough of the origins of gravity is around the corner.

General relativity

Special relativity

post-Newtonian
G→0

v/c→0
Standard Model

QED

Maxwell
h→0

Figure 1: The dotted line shows an next order EFT of gravity with respect to GR and the standard
model in “theory” space. Diagram courtesy of Leo C. Stein
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2 Motivation

2.1 Tests of GR

There are two distinct ways to study theories of gravity: theory-dependently and theory-independently.
Theory-dependent tests are great for statistics and getting detections. We increase our signal-to-
noise we are looking for a specific kind of signal, e.g. matched filtering. However, we would like to
create a framework were we can test a huge class of theories all at once, where each specific theory
is parameterized so that we can better connect observation to new theories.

2.2 Numerical simulation

The broad on-going goal of this project to develop a theory independent framework that could in
principle be applied to virtually all known subleading EFTs of gravity. And for demonstration
purposes and to generate waveforms that could be use for gravitational wave detectors, subsets or
specific theories will be chosen for numerical simulation. We need simulate compact binary merger
in these theories to determine what the characteristics effects of on a distant gravitational wave
detectors. Since waveforms informed by alternative theories of gravity has not been implemented in
the search pipelines of current generation detectors like LIGO and VIRGO, we have good impetus
to create such waveforms.

2.3 Perturbations of GR

To recap, from modern effective field theory principles, we can view alternative theories of gravity
as corrections to GR. This means we can do perturbation theory. Specifically we perform do
perturbation theory on gravity theories. Perturbations of the theory will yield in perturbations of
GR spacetime solutions.

Before embarking on compact binary merger simulations, we focus our project on stationary
and isolated, black holes, where no matter is unmodeled. This is usually represented by the Kerr
solution in GR. The program we are developing from ground up should be generalizable to binary
black holes and systems with modelled matter.

In this project, we study general axisymmetric, stationary perturbations of the Kerr spacetime,
a solution of GR, and develop a formalism for solving perturbations from Kerr. Depending on
your point of view, the perturbations can represent corrections to GR, but they can also represent
matter near the horizons of black holes, known as “bumpy black holes”.

Note here that the perturbed spacetime does not have to be Ricci-flat, a property that most
known analytic black hole solutions in GR have.
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3 Setup

3.1 Perturbation theory

We consider a 1-parameter family of spacetime geometries, described by the metric gab with the
parameter ε. Expanding around ε = 0 for sufficiently small ε,

gab(ε) = g
(ε=0)

ab + ε
dgab
dε

∣∣∣∣
ε=0︸ ︷︷ ︸

h
(1)
ab

+O(ε2) (3.1)

In our prescription, let g
(ε=0)

ab be a Ricci-flat geometry like Schwarzschild or Kerr.

3.2 Theory independent Lagrangian

For example, the action for a general interacting scalar θ non-minimally coupled to curvature

I =

∫
d4x
√
−g
[
R− 1

2
∂aθ∂

aθ + εLint

]
(3.2)

For example, the interaction can be θ coupled to the Pontryagin density in dynamical Chern-Simons
theory, Lint = θ R∗ R . We picked a scalar field for the sake of numerical simulations, but we can
easily adapt other fields into our formalism.

3.3 Theory independent Equations of Motion

Detailed in later in section 4.5, we can show that the Einstein tensor, which captures space time
curvature, Gab is equal to an effective stress energy tensor T eff

ab , where T eff
ab = O(ε2) and ∇aT eff

ab = 0.
That is, spacetime curvature is sourced by the energy-momentum of the scalar field and the scalar-
curvature interaction.

Additionally the by varying the action with respect to the scalar field, we will get the 4-
dimensional laplacian acting on the scalar �θ equal to to a source arising from the variation of the
interaction piece of the Lagrangian S = O(ε1).

This is a compact way to think about these equations of motion: in a coordinates system called
Lorentz gauge, we can write that the two relevant equations of motion for the metric perturbations
hab and scalar θ are �hab = T eff

ab and �θ = S, repsectively.
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3.4 Gauge for black holes

In gravity, diffeomorphisms can be thought of as coordinate transformations that leave spacetime
invariant. So while the physics of gravity remains the same, the coordinate freedom is what we call
gauge freedom. We will see in a later section (4.4.3) that infinitesimal diffeomorphisms correspond
to the gauge transformation not unlike a spin-2 gauge boson.

While it doesn’t matter which gauge we choose because the physics remains the same, we must
still remain judicious in our choice of gauge. This is because analytical analysis can be greatly
elucidated or obscured depending on the gauge. And numerical analysis can plain converge quickly
or not converge at all due to our choice of gauge. When we are working with spacetimes that can
curve and oscillate, the coordinates can curve and oscillate too, distinguishing between the two is
a subtle task that takes care. Gauge becomes not a convenient redundancy but rather a serious
issue we must consider at every step of this project.

3.5 Black hole spacetimes

For astrophysical blackholes, we can make a few observations that yield simplifying assumptions.
First, conservation of electric charge and the Coulomb force implies that the black hole any charge
in the black hole be canceled by opposite charges streaming in. We can take astrophysical blackholes
to be essentially electrically uncharged. Similarly, conservation of angular momentum implies that
after all the collisions of matter, a black hole settles down into a state with a well defined angular
momentum, and into an axisymmetric state, where there exists an aximuthal direction for which
the black hole can be modeled to be symmetric. Lastly, at late times of the black hole evolution,
we expect all non-stationary parts of the black hole to gravitationally radiate away. So we can
consider stationary black holes for now. In this project, we are, in a sense, considering only steady-
state solutions of black holes in theories that corrections to GR.

Because of these assumptions, we are motivated to put our metrics into Weyl-Lewis-Papapetrou
(WLP) gauge, which includes virtually all stationary, axisymmetric spacetimes. We will explore
this in greater detail, but the line element due to this metric is

ds2 = −V (dt− wdφ)2 + V −1
(
ρ2dφ2 + e2γ(dρ2 + e2λdz2)

)
(3.3)

Note that unlike the Kerr solution in GR, this metric doesn’t have to be Ricci-flat.
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4 General Spacetime Results

Despite not requiring any explicit coordinates or gauge, following results will be serve as the fun-
damental language we use for the rest of the project.

4.1 Perturbation Theory

To reiterate, we have

gab(λ) = g
(0)

ab + λ
dgab
dλ

∣∣∣∣
λ=0

+
λ2

2

d2gab
dλ2

∣∣∣∣
λ=0

+O(λ3) (4.1)

≡ g (0)
ab + λh

(1)
ab +

λ2

2
h

(2)
ab +O(λ3) (4.2)

where g
(0)

ab is the background Ricci-flat spacetime and h
(1)
ab = dgab

dλ

∣∣∣
λ=0

is the first order metric

perturbation.

4.2 Connection on a Background

We have the difference of connections, where ∇(λ)
a is compatible with the metric g

(λ)
bc :

(∇(λ)
a −∇(0)

a )vb = Cbacv
c (4.3)

(∇(λ)
a −∇(0)

a )ωb = −Ccabωc (4.4)

where Ccab is a function of λ.

Therefore, from 0 = ∇(λ)
c g

(λ)
ab , we have two identities:

Ccab =
1

2
gcd(λ)

(
∇ (0)
a g

(λ)
db +∇ (0)

b g
(λ)

ad −∇ (0)
d g

(λ)
ab

)
(4.5)

Ccab =
1

2
gcd(λ)

(
∂ag

(λ)
db + ∂bg

(λ)
ad − ∂dg

(λ)
ab

)
− 1

2
gcd(0)

(
∂ag

(0)
db + ∂bg

(0)
ad − ∂dg

(0)
ab

)
(4.6)

For notational convenience let ∇̃a ≡ ∇ (0)
a and ∇a ≡ ∇ (λ)

a . The Riemann curvature tensor is

R d
abc ωd ≡ [∇a,∇b]ωc (4.7)

= ∇a∇bωc − (a↔ b) (4.8)

= ∇̃a(∇bωc)−���
���Cdab(∇dωc)− Cdac(∇bωd)− (a↔ b) (4.9)

= ∇̃a(∇̃bωc − Cdbcωd)− Cdac(∇̃bωd − Cebdωe)− (a↔ b) (4.10)

= ∇̃a∇̃bωc − ∇̃aCdbcωd(((((
((((

((
−Cdbc∇̃aωd − Cdac∇̃bωd + CdacC

e
bdωe − (a↔ b) (4.11)

= ∇̃[a∇̃b]ωc − ∇̃[aC
d
b]cωd + Cdc[aC

e
b]dωe (4.12)

=
(
R
d (0)
abc − ∇̃[aC

d
b]c + Cec[aC

d
b]e

)
ωd (4.13)

=⇒ R d
abc = R d

abc (0) − ∇̃[aC
d
b]c + Cec[aC

d
b]e (4.14)
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4.3 Linearized Einstein Operator

The linearized Einstein operator is the linearized Einstein tensor acting on the space of perturba-
tions. Specifically

G(1) : C∞
[
Sym2(T ∗M)

]
→ C∞

[
Sym2(T ∗M)

]
(4.15)

This operator is possibly a Lichnerowicz operator, but it is unconfirmed. It will be shown in
section 4.6.2 that this operator self-adjoint with respect to a natural inner product.

Let ∇̃a ≡ ∇ (0)
a and gab = g

(λ)
ab unless otherwise specified.

Ccab =
1

2
gcd
(
∇̃agdb + ∇̃bgad − ∇̃dgab

)
(4.16)

C
c (0)
ab = 0 (4.17)

=⇒ Ccab = O(λ) (4.18)

Ccab =
1

2
λgcd(0)

(
∇̃ahdb + ∇̃bhad − ∇̃dhab

)
+O(λ2) (4.19)

We have

R d
abc = R d

abc (0) − ∇̃[aC
d
b]c +O(λ2) (4.20)

=⇒ Rac = R (0)
ac − ∇̃[aC

d
d]c +O(λ2) (4.21)

= R (0)
ac − 1

2
λgde(0)

(
∇̃a∇̃dhec + ∇̃a∇̃chde − ∇̃a∇̃ehdc − (a↔ d)

)
+O(λ2) (4.22)

= R (0)
ac − 1

2
λ
(

[∇̃a, ∇̃e]hec + ∇̃a∇̃ch− ∇̃e∇̃chae − ∇̃a∇̃dhdc + ∇̃d∇̃dhac
)

+O(λ2)

(4.23)

Rac = R (0)
ac − 1

2
λ
(
∇̃a∇̃ch− ∇̃e∇̃(ahc)e + ∇̃d∇̃dhac

)
+O(λ2) (4.24)

where we have ∇̃a and hab raised and lowered (and traced) by the background metric gcd(0).
Furthermore, we have

R = gacRac (4.25)

= (gac(0) − λhac)R (0)
ac − 1

2
λgac(0)

(
∇̃a∇̃ch− ∇̃e∇̃(ahc)e + ∇̃d∇̃dhac

)
+O(λ2) (4.26)

= R(0) − λhacR (0)
ac − 1

2
λ
(
∇̃a∇̃ah− 2∇̃e∇̃ahae + ∇̃d∇̃dh

)
+O(λ2) (4.27)

R = R(0) − λ
(
hacR (0)

ac + ∇̃d∇̃dh− ∇̃c∇̃dhcd
)

+O(λ2) (4.28)

Therefore the linearized Einstein tensor is
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Gab ≡Rab −
1

2
Rgab (4.29)

=R
(0)

ab − 1

2
λ
(
∇̃a∇̃bh− ∇̃e∇̃(ahb)e + ∇̃d∇̃dhab

)
(4.30)

− 1

2
(g

(0)
ab + λhab)

[
R(0) − λ

(
hcdR

(0)
cd + ∇̃d∇̃dh− ∇̃c∇̃dhcd

)]
+O(λ2) (4.31)

=G
(0)

ab − 1

2
λhabR

(0) +
1

2
λg

(0)
ab hcdR

(0)
cd − 1

2
λ
(
∇̃a∇̃bh− ∇̃e∇̃(ahb)e + ∇̃d∇̃dhab

)
(4.32)

+
1

2
λg

(0)
ab

(
hcdR

(0)
cd + ∇̃d∇̃dh− ∇̃c∇̃dhcd

)
+O(λ2) (4.33)

If we have a Ricci-flat background, R
(0)

cd = 0,

Gab = −1

2
λ
(
∇̃a∇̃bh− ∇̃e∇̃(ahb)e + ∇̃d∇̃dhab − g

(0)
ab ∇̃d∇̃dh+ g

(0)
ab ∇̃c∇̃dhcd

)
+O(λ2) (4.34)

which agrees with the Fierz-Pauli equation for massless spin-2 bosons in a Minkowski background.
We can also note that λ∇a = λ∇̃a +O(λ2), so

Gab = −1

2
λ
(
∇a∇bh−∇e∇(ahb)e +∇d∇dhab − gab∇d∇dh+ gab∇c∇dhcd

)
+O(λ2) (4.35)

4.4 Gauge conditions

4.4.1 Covariant Derivative Commutator derivation

Given that [∇̃a, ∇̃b]ωc = −Rd (0)
cab ωd, we have

[∇̃a, ∇̃b](hcdvd) = −Re (0)
cab (hedv

d) (4.36)

∇̃a∇̃bhcdvd +
((((

(((
((((

((

∇̃bhcd∇̃avd + ∇̃ahcd∇̃bvd + hcd∇̃a∇̃bvd − (a↔ b) = −Re (0)
cab (hedv

d) (4.37)

[∇̃a, ∇̃b]hcdvd + hce[∇̃a, ∇̃b]ve = −Re (0)
cab (hedv

d) (4.38)

[∇̃a, ∇̃b]hcdvd + hceR
e (0)
dab vd = −Re (0)

cab hedv
d (4.39)

[∇̃a, ∇̃b]hcd = −Re (0)
cab hed −R

e (0)
dab hce

(4.40)
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4.4.2 Lorenz Gauge of the Trace-reverse of Metric Perturbation

In Lorenz gauge, 0 = ∇̃ah̄ab = ∇̃ahab −
1
2gab∇̃

ah in 3 + 1 dimensions with a Ricci-flat background

Gab = −1

2
λ
(
∇̃a∇̃bh− ∇̃e∇̃(ahb)e + ∇̃d∇̃dhab − gab∇̃d∇̃dh+ gab∇̃c∇̃dhcd

)
+O(λ2) (4.41)

= −1

2
λ

(
∇̃a∇̃bh− ∇̃e∇̃(ahb)e + ∇̃d∇̃dhab − gab∇̃d∇̃dh+

1

2
gab∇̃c(gcd∇̃dh)

)
+O(λ2) (4.42)

= −1

2
λ

(
∇̃a∇̃bh− ∇̃e∇̃(ahb)e + ∇̃d∇̃dhab −

1

2
gab∇̃d∇̃dh

)
+O(λ2) (4.43)

= −1

2
λ
(
∇̃a∇̃bh− ∇̃e∇̃ahbe − ∇̃e∇̃bhae + ∇̃d∇̃dh̄ab

)
+O(λ2) (4.44)

= −1

2
λ

(
∇̃a∇̃bh− ∇̃e∇̃a

(
h̄be +

1

2
gbeh

)
− ∇̃e∇̃b

(
h̄ae +

1

2
gaeh

)
+ ∇̃d∇̃dh̄ab

)
+O(λ2)

(4.45)

= −1

2
λ

(
∇̃a∇̃bh− ∇̃e∇̃ah̄be −

1

2
∇̃b∇̃ah− ∇̃e∇̃bh̄ae −

1

2
∇̃a∇̃bh+ ∇̃d∇̃dh̄ab

)
+O(λ2) (4.46)

= −1

2
λ
(
−∇̃e∇̃(ah̄b)e + ∇̃d∇̃dh̄ab

)
+O(λ2) (4.47)

= −1

2
λ
(
−gec

(
[∇̃c, ∇̃a]h̄be + (a↔ b)

)
+ �̃h̄ab

)
+O(λ2) (4.48)

= −1

2
λ
(
−gec

(
−Rd (0)

bca h̄de −Rd (0)
eca h̄bd + (a↔ b)

)
+ �̃h̄ab

)
+O(λ2) (4.49)

= −1

2
λ
(

+
(
R
d e (0)
b a h̄de +���

���Rd e (0)
e a h̄bd + (a↔ b)

)
+ �̃h̄ab

)
+O(λ2) (4.50)

Gab = −1

2
λ
(

2R
c d (0)
a b h̄cd + �̃h̄ab

)
+O(λ2) (4.51)

Note that for WLP gauge that we choose later, h = 0, so h̄ab = hab.

4.4.3 Infinitesimal Gauge Transformation

We see that infinitesimal diffeomorphism xa 7→ x′a
′

= xa
′

+ κa
′
, is equivalent to an infinitesimal

gauge transformation of the metric at linear order:

gab(x) 7→ ga
′b′(x′) (4.52)

=
∂x′a

′

∂xa
∂x′b

′

∂xb
gab(x) (4.53)

= (δa
′
a + ∂aκ

a′)(δb
′
b + ∂bκ

b′)gab(x) (4.54)

=
(
δa
′
a δ

b′
b + δa

′
a ∂bκ

b′ + ∂aκ
a′δb

′
b +O(κ2)

)
gab(x) (4.55)

= ga
′b′(x) + ∂a

′
κb
′
+ ∂b

′
κa
′
+O(κ2) (4.56)

Therefore for first order perturbations, hab 7→ hab +∇(0)
a κb +∇(0)

b κa is a gauge transformation for
arbitrary infinitesimal covector field κa. Note, this is exactly the gauge transformation for spin-2
gauge bosons. We see that for the 10 components of hab, we have 4 gauge degrees of freedom. The
remaining 6 are 2 propagating degrees of freedom and 4 static components.
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4.5 Decoupling Limit of Scalar field

In the decoupling limit, we have for smalle ε, the action for an interacting scalar field (e.g. dynamical
Chern-Simons):

I =

∫
d4x
√
−g

[
m2
p

2
R− 1

2
∂aθ∂

aθ + εLint

]
(4.57)

Imposing the principle of stationary action,

0 = δI (4.58)

=

∫ {
δ
√
−g

[
m2
p

2
R− 1

2
∂aθ∂

aθ + εLint

]
+
√
−gδ

[
m2
p

2
R− 1

2
∂aθ∂

aθ + εLint

]}
d4x (4.59)

=

∫
d4x
√
−g

{
−1

2
gabδg

ab

[
m2
p

2
R− 1

2
∂cθ∂

cθ + εLint

]
+
m2
p

2
δR+ δ

[
−1

2
∂cθ∂

cθ + εLint

]}
(4.60)

=

∫
d4x
√
−g

{
−1

2
gabδg

ab

[
m2
p

2
R− 1

2
∂cθ∂

cθ + εLint

]
+
m2
p

2
Rabδg

ab − 1

2
δ(∂cθ∂

cθ) + δ [εLint]

}
(4.61)

=

∫
d4x
√
−gδgab

{
m2
p

2

(
Rab −

1

2
gabR

)
− 1

2
gab

[
−1

2
∂cθ∂

cθ + εLint

]
(4.62)

−1

2

δ

δgab
(gcd∂cθ∂dθ) +

δ

δgab
(εLint)

}
+

∫
d4x
√
−g

{
−

1
2δ(∂cθ∂

cθ)

δθ
δθ + ε

δLint

δθ
δθ

}
(4.63)

=

∫
d4x
√
−gδgab

{
m2
p

2
Gab −

1

2
gab

[
−1

2
∂cθ∂

cθ + εLint

]
− 1

2
δcaδ

d
b∂cθ∂dθ + ε

δLint

δgab

}
(4.64)

+

∫
d4x
√
−g
{
−∂cθ∂

cδθ

δθ
δθ + ε

δLint

δθ
δθ

}
(4.65)

=
1

2

∫
d4x
√
−gδgab

{
m2
pGab −

[
∂aθ∂bθ −

1

2
gab∂cθ∂

cθ

]
+ εLintgab + 2ε

δLint

δgab

}
(4.66)

+

∫
d4xδθ

{
+∂c(

√
−g∇cθ) + ε

√
−g δLint

δθ

}
(4.67)

0 =
1

2

∫
d4x
√
−gδgab

{
m2
pGab −

[
∂aθ∂bθ −

1

2
gab∂cθ∂

cθ

]
+ εLintgab + 2ε

δLint

δgab

}
(4.68)

+

∫
d4x
√
−gδθ

{
+∇c∇cθ + ε

δLint

δθ

}
(4.69)

Therefore our equations of motion are:

mp
2Gab + εLintgab + 2ε

δLint

δgab︸ ︷︷ ︸
εCab

= ∂aθ∂bθ −
1

2
gab∂cθ∂

cθ︸ ︷︷ ︸
T

(θ)
ab

�θ = −εδLint

δθ︸ ︷︷ ︸
S

(4.70)

(4.71)
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We have the perturbative expansion from a Ricci-flat, scalarless background:

θ = 0 + εθ(1) +
1

2
ε2θ(2) +O(ε3) (4.72)

gab = g
(0)

ab + εh
(1)

ab +
1

2
ε2h

(2)
ab +O(ε3) (4.73)

T
(θ)

ab = O(ε2) (4.74)

Rabcd = O(1) (4.75)

Lint = O(ε) (4.76)

S = O(ε) (4.77)

εCab = O(ε2) (4.78)

Gab = −1

2
ε
(

2R
c d (0)
a b h̄

(1)
cd + �(0)h̄

(1)
ab

)
+O(ε2) (4.79)

So in the decoupling limit of ε→ 0,

4.5.1 Zeroth Order

Just the Kerr solution with no scalar.

4.5.2 First Order

�(0)
(
εθ(1)

)
= −ε

(
δLint

δθ

)(0)

(4.80)

�(0)θ(1) = −
(
δLint

δθ

)(0)

(4.81)

and

m2
pG

(1)
ab + εL(0)

intg
(0)
ab + 2ε

(
δLint

δgab

)(0)

= 0 (4.82)

m2
pG

(1)
ab = 0 (4.83)(

2R
c d (0)
a b + δcaδ

d
b�

(0)
)
h̄

(1)
cd = 0 (4.84)

where a solution is h̄
(1)

cd = 0.

4.5.3 Second Order

Now at O(ε2) order, assuming h̄
(1)

cd = 0,

m2
pG

(2)
ab + εL(1)

intg
(0)
ab + 2ε

(
δLint

δgab

)(1)

= ∂a

(
εθ(1)

)
∂b

(
εθ(1)

)
− 1

2
g

(0)
ab ∂c

(
εθ(1)

)
∂c
(
εθ(1)

)
(4.85)
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which reduces to

G
(2)
ab = m−2

p

−εL(1)
intg

(0)
ab − 2ε

(
δLint

δgab

)(1)

︸ ︷︷ ︸
−εC(1)

ab

+ ε2∂aθ
(1)∂bθ

(1) − 1

2
ε2g

(0)
ab ∂cθ

(1)∂cθ(1)︸ ︷︷ ︸
T

(2)
ab


︸ ︷︷ ︸

S
(2)
ab

(4.86)

=⇒ − 1

2(2!)

(
2R

c d (0)
a b + δcaδ

d
b�

(0)
)
h̄

(2)
cd = S

(2)
ab (4.87)

4.5.4 Third Order

We need to find θ to second order in ε:

�(0)

(
1

2
ε2θ(2)

)
= −ε

(
δLint

δθ

)(2)

(4.88)

�(0)θ(2) = −2

ε

(
δLint

δθ

)(2)

(4.89)

Then we have to O(ε3) order, assuming h̄
(1)

cd = 0,

G
(3)
ab = m−2

p

−εL(2)
intg

(0)
ab − 2ε

(
δLint

δgab

)(2)

︸ ︷︷ ︸
−εC(2)

ab

+
1

2
ε2
(
∂aθ

(1)∂bθ
(2) + ∂aθ

(2)∂bθ
(1) − g(0)

ab ∂cθ
(1)∂cθ(2)

)
︸ ︷︷ ︸

T
(3)
ab


︸ ︷︷ ︸

S
(3)
ab

(4.90)

=⇒ − 1

2(3!)

(
2R

c d (0)
a b + δcaδ

d
b�

(0)
)
h̄

(3)
cd = S

(3)
ab (4.91)

4.5.5 Observation

We see as expected, the part of each order of Gab acting on the solely the highest derivative of

the metric is always an operator of the form 2R
c d (0)
a b + δcaδ

d
b�

(0). This comes from the product of
the perturbation expansion always has the same form for terms that have a single combinatorial
contribution.
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4.6 Inner Product Space of Perturbations

A natural first attempt at an inner product of pab, qcd in the space of first order stationary, axisym-

mmetric perturbations of a background metric g
(0)
ab is

〈p, q〉 ≡
∫
pabqab

√
g(0)d

4x (4.92)

〈p, q〉 =

∫
dt dφ

∫
pab g

ac
(0) g

bd
(0) qcd

√
g(0)d

2x (4.93)

where raising and lowering is done by the background metric. Note that in equation (4.93) is only
true for stationary, axisymmetric, metrics. The t and φ integrals are always the same for all pab
and qcd, so we can factor it out of all inner products.

4.6.1 Trace-reverse and the Inner Product

As a reminder, pab = pab, because
(
pab − 2

dg
(0)
ab p
)
− 2

dg
(0)
ab

(
p− 2

dg
(0)
ab g

ab
(0)p
)

= pab and that

p̄abq̄ab =

(
pab − 2

d
gab(0)p

)(
qab −

2

d
g

(0)
ab q

)
(4.94)

= pabqab −
2

d
pq − 2

d
pq +

4

d�
�
�
�

gab(0)g
(0)
ab

d
pq (4.95)

= pabqab (4.96)

=⇒ 〈p, q〉 = 〈p̄, q̄〉 (4.97)

4.6.2 Self-Adjointness of the Linearized Einstein Operator

Reading off the form of the linearized Einstein operator G(1) in Lorenz gauge from eq. (4.84),

〈p,G(1)[q]〉 =

∫
d4x
√
g(0) p

abG(1)[q]ab (4.98)

=

∫
d4x
√
g(0) p

ab
(

2R
c d (0)
a b + δcaδ

d
b�

(0)
)
q̄cd (4.99)

=

∫
d4x
√
g(0)

(
2R

a b (0)
c d pabq̄

cd + pcd�(0)q̄cd

)
(4.100)

=

∫
d4x
√
g(0)

(
2R

a b (0)
c d pabq

cd + p̄cd�(0)qcd

)
(4.101)

=

∫
d4x
√
g(0)

(
2R

a b (0)
c d p̄abq

cd + p̄cd�(0)qcd

)
(4.102)

where the last step is because we have a Ricci-flat background, so R
a b (0)
c d g

(0)
ab = 0 = R

a b (0)
c d gcd(0).

And in general, we see that the trace-reverse operator commutes with G(1), i.e. for all q, G(1)[q̄] =
G(1)[q].
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Examining the second term of the integral, we integrate by parts twice and make use of the use
the identity (A.18),∫

d4x
√
g(0) p̄

cd∇̃a∇̃aqcd =

∫
d4x
√
g(0) ∇̃a(p̄cd∇̃aqcd)−

∫
d4x
√
g(0) ∇̃ap̄cd∇̃aqcd (4.103)

=
���

���
���

���
�∫

d4x ∂a(
√
g(0)p̄

cd∇̃aqcd)−
∫
d4x
√
g(0) ∇̃ap̄cd∇̃aqcd (4.104)

= −
∫
d4x
√
g(0) ∇̃a(∇̃ap̄cdqcd) +

∫
d4x
√
g(0) ∇̃a∇̃ap̄cdqcd (4.105)

= −
���

���
���

���
�∫

d4x ∂a(
√
g(0)∇̃ap̄cdqcd) +

∫
d4x
√
g(0) ∇̃a∇̃ap̄cdqcd (4.106)

Therefore, we have

〈p,G(1)[q]〉 =

∫
d4x
√
g(0)

(
2R

a b (0)
c d + δac δ

b
d�

(0)
)
p̄abq

cd (4.107)

=

∫
d4x
√
g(0)G

(1)[p]cdqcd (4.108)

= 〈G(1)[p], q〉 (4.109)

The operator G(1) is self-adjoint with respect to this inner product.

4.7 Bianchi Identity

4.7.1 General Connections

Baez and Muniain[1] outline an elegant proof of the Bianchi identity, reproduced here in detail.
We will use the the Bianchi identity to show the geometric origin of the divergencelessness of the
Einstein tensor and all possible source terms.

Given a fiber bundle π : E →M and a connection D onM, for any E-valued form η = sI ⊗ωI
on M, in local coordinates,

d2
Dη = dD

(
DνsI ⊗ dxν ∧ dxI

)
(4.110)

= DµDνsI ⊗ dxµ ∧ dxν ∧ dxI (4.111)

=
1

2
[Dµ, Dν ] sI ⊗ dxµ ∧ dxν ∧ dxI (4.112)

=
1

2
FµνsI ⊗ dxµ ∧ dxν ∧ dxI (4.113)

= F ∧ η (4.114)

Note that the exterior covariant derivative doesn’t form a de Rham cohomology where d2 = 0
because the covariant derivative is not commutative, unlike the partial derivative. The failure to
commute is the geometric curvature.
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Therefore,

d3
Dη = dD(d2

Dη) (4.115)

= dD(F ∧ η) (4.116)

= dDF ∧ η + F ∧ dDη (4.117)

d3
Dη = d2

D(dDη) (4.118)

= F ∧ dDη (4.119)

=⇒ dDF = 0 (4.120)

In local coordinates,

0 = dDF ∧ η = dD

(
1

2
Fµν ⊗ dxµ ∧ dxν

)
∧
(
sI ⊗ dxI

)
(4.121)

=
1

2
(DλFµν)⊗ dxλ ∧ dxµ ∧ dxν ∧

(
sI ⊗ ∧dxI

)
(4.122)

=
1

2
(DλFµν)sI ⊗ dxλ ∧ dxµ ∧ dxν ∧ dxI (4.123)

=
1

2
(Dλ (FµνsI)− Fµν (DλsI))⊗ dxλ ∧ dxµ ∧ dxν ∧ dxI (4.124)

=
1

2
[Dλ, Fµν ]sI ⊗ dxλ ∧ dxµ ∧ dxν ∧ dxI (4.125)

=
1

2
· 1

3
([Dλ, Fµν ] + [Dµ, Fνλ] + [Dν , Fλµ]) sI ⊗ dxλ ∧ dxµ ∧ dxν ∧ dxI (4.126)

=⇒ 0 = [Dλ, Fµν ] + [Dµ, Fνλ] + [Dν , Fλµ] (4.127)

0 = [Dλ, [Dµ, Dν ]] + [Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] (4.128)

which is in the form of the Jacobi identity.

4.7.2 With Riemann curvature

For our Levi-Civita connection ∇ compatible with metric g, we have the curvature

R(u, v)w =
(
[∇u,∇v]−∇[u,v]

)
w, (4.129)

which is just the curvature of the connection ∇.

0 = [u, [v, w]] + [v, [w, u]] + [w, [u, v]] (4.130)

= ∇u[v, w]−∇[v,w]u+ (uvw cyc) (4.131)

= ∇u(∇vw −∇wv)−∇[v,w]u+ (uvw cyc) (4.132)

= [∇u,∇v]w −∇[u,v]w + (uvw cyc) (4.133)

0 = R(∇u,∇v)w + (uvw cyc) (4.134)

(4.135)
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Specifically, the Riemann curvature tensor is Rabcdea ≡ R(∇b,∇c)ed. Choose u = ∂a, v = ∂b, w = ∂c
to be coordinate basis vector fields.

=⇒ 0 = R(∇a,∇b)∂c +R(∇b,∇c)∂a +R(∇c,∇a)∂b (4.136)

=⇒ 0 = Rdabc + (abc cyc) (4.137)

=⇒ 0 = Rd[abc] (4.138)

From eq. (4.128) applied to the Levi-Civita connection,

0 = [∇a, [∇b,∇c]] + [∇b, [∇c,∇a]] + [∇c, [∇a,∇b] (4.139)

= [∇a, R(∇b,∇c)]ed + (abc cyc) (4.140)

= ∇aRebcdee −(((((
((

R(∇b,∇c)gad + (abc cyc) (4.141)

=⇒ 0 = ∇aRebcd + (abc cyc) (4.142)

=⇒ 0 = ∇aRecdb +∇aRedbc + (abc cyc) (4.143)

where we use eq. (4.137) in the last step.
Contracting with the metric twice,

0 = gec (���
��∇aRecdb +∇aRedbc + (abc cyc)) (4.144)

0 = −∇aRdb +∇bRda +∇eRedab (4.145)

0 = gbd (−∇aRdb +∇bRda +∇eRedab) (4.146)

0 = −∇aR+∇dRda +∇eRea (4.147)

=⇒ 0 = ∇d (2Rda − gdaR)︸ ︷︷ ︸
2Gda

(4.148)

=⇒ 0 = ∇dGda (4.149)
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5 Analytical Results

The following are metric dependent results and lead us into Weyl-Lewis-Papaterou black hole
spacetime that we are considering for this project.

5.1 Birkhoff’s Theorem

Here is a nice (full) proof of Birkhoff’s theorem. The main idea comes from Eric Poisson.[2]

5.1.1 Spherical Symmetry

Assuming a spherically symmetric 3 + 1 dimensional spacetime, we can choose coordinates so that
the metric has the general form:

ds2 = A(t, r)dt2 +B(t, r)dt dr + C(t, r)dr2 +D(t, r)dΩ2 (5.1)

We can transform our coordinates (t, r) so that r becomes
√
D. We choose the positive root

because we want the angular coordinates to have positive Lorentzian signature (If we choose the
negative convention our final metric change to reflect the convention change). Therefore we can
always rewrite our spherically symmetric metric as

ds2 = A(t, r)dt2 +B(t, r)dt dr + C(t, r)dr2 + r2dΩ2 (5.2)

where we have chosen the coordinate r specifically to give the spatial 2-sphere an r2 areal dependence
in the 4-fold.

Given any A(t, r), B(t, r), C(t, r), we can transform the t coordinates so that our new coordi-
nates, t′(t, r) and r, gives

dt′2 =

(
∂t′

∂t
dt+

∂t′

∂r
dr

)2

(5.3)

dt′2 =

(
∂t′

∂t

)2

dt2 + 2
∂t′

∂t

∂t′

∂r
dtdr +

(
∂t′

∂r

)2

dr2 (5.4)

D(t′, r)

(
∂t′

∂t

)
= A(t, r) (5.5)

D(t′, r)

(
2
∂t′

∂t

∂t′

∂r

)
= B(t, r) (5.6)

E(t′, r)−D(t′, r)

(
∂t′

∂r

)2

= C(t, r) (5.7)

Since we have three equations for three variables t′(t, r), D (t′(t, r), r) , E (t′(t, r), r), the equations
are always soluble up given initial conditions. The choice of initial conditions is part of the gauge
choice of our coordinate system. Then the line element is

ds2 = D(t, r)dt2 + E(t, r)dr2 + r2dΩ2 (5.8)

We see that we have two functional degrees of freedom assuming spherical symmetry. Once the
vacuum Einstein Field Equations are imposed, we will see that only a real valued parameter will
remain as a degree of freedom.
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5.1.2 Vacuum Einstein Field Equations

In regions where D and E do not blow up or go to 0, we can renaming our metric degrees of
freedom, in two steps:

ds2 = −e2ψ(t,r)f(t, r)dt2 +
1

f(t, r)
dr2 + r2dΩ2 (5.9)

ds2 = −e2ψ(t,r)

(
1− 2m(t, r)

r

)
dt2 +

(
1− 2m(t, r)

r

)−1

dr2 + r2dΩ2 (5.10)

In complete vacuum Tµν = 0, we have that for the Einstein tensor Gµν with the help of
Mathematica,

0 = Gtt =
−2∂rm(t, r)

r2
(5.11)

0 = Grt =
2∂tm(t, r)

r2
(5.12)

0 = Grr −Gtt =
2

r

(
1− 2m(t, r)

r

)
∂rψ(t, r) (5.13)

By equation (5.11), m(t, r) = m(t) and by equation (5.12), m(t, r) = m(r). Therefore m(t, r) is a
real constant.
Now by equation (5.13), we have ψ(t, r) = ψ(t).
We can then rescale t 7→ e−ψ(t)t, so that gtt = −

(
1− 2m

r

)
and all other metric components stay

the same.
Therefore the unique spherically symmetric solution to the vacuum Einstein Field equations

with Λ = 0 is the Schwarzschild solution:

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 (5.14)

for some coordinates with the −+ ++ Lorentzian signature.
Notice we see that any spherically symmetric solution must be asymptotically flat (as r →∞)

and static (with respect to the time-like vector ∂
∂t); we did not impose these conditions.

Therefore, there is no gravitational monopole radiation.

5.1.3 Komar Mass

It turns out the Komar mass integral of the Schwarzschild solution is m, so m really does correspond
to a physical mass of the metric.

5.2 Weyl-Lewis-Papapetrou

We would like to do something like Birkhoff’s theorem and the Schwarzchild solution, but for
axisymmetric spacetimes not spherically-symmetric spacetimes. Birkhoff’s theorem does not exist
for axisymmetric spacetimes, but we can find the unique stationary axisymmetric metric: Weyl-
Lewis-Papapetrou (WLP). WLP is our gauge of choice for most of our analytical analysis. In order
to prove its uniqueness we need a little machinery called Frobenius’ Theorem.
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5.2.1 Frobenius’ Theorem

There are a few equivalent statements of Frobenius’ Theorem; while the differential form version
is nice, we use the vector field form for our current purposes. Frobenius’ Theorem is useful not
only for the proof of uniqueness of the WLP metric, but also will be used to show the integrability
conditions for the solution to the Einstein Field Equations under a WLP metric.

Without introducing to many definitions, the theorem is roughly

Theorem 5.1 In order to have a smooth sub-manifold of M that has tangent spaces coinciding
with a tangent sub-bundle W ⊆ E over M, it is necessary and sufficient for W to be involute, i.e.
∀Xa, Y a ∈W : [X,Y ]a ∈W .

Therefore we have the following corollary:

Corollary 5.1.1 If vector fields Xa and Y a commute, with either vanishing at a point, and

XaRa
[bXcY d] = 0 = Y aRa

[bY cXd], (5.15)

then the 2-fold orthogonal to Xa and Y a are integrable.

The proofs are outlined in Wald[3], and may be reproduced here at a later time.

5.2.2 Proof of WLP

Given a time-like
(
∂
∂t

)a
and an “azimuthal” space-like

(
∂
∂φ

)a
Killing vector fields for stationary

axisymmetric 1 + 3 dimensional spacetimes. Assuming these satisfy corollary 5.1.1, the span of the
other vector fields generated by the other two coordinates (x2 and x3) are orthogonal to ∂at and
∂aφ. (The first condition of corollary 5.1.1 is trivial, but for the second there is a possible argument
based on t- and φ-reversal symmetry, but further investigation is needed.)

ds2 = V (x2, x3)dt2 + 2W (x2, x3)dtdφ+X(x2, x3)dφ2 + gij(x2, x3)dxidxj (5.16)

for i, j ∈ {2, 3}. In block matrix form, the metric is

gab =


−V W 0 0
W X 0 0
0 0 g22 g23

0 0 g23 g33

 (5.17)

Note that there are six distinct functions of x2 and x3.
We choose x2 = ρ = V X +W 2, which is the negative of determinant of the upper 2× 2 block.

And choose x3 = z be such that ∇aρ∇az = 0. Redefining variables, we must have

ds2 = −V (dt− wdφ)2 + V −1ρ2dφ2 + Ω2(dρ2 + Λdz2) (5.18)

where w = W/V , Ω2 = g22, and Λ = g33/Ω
2.

The four functional degrees of freedom are V (ρ, z), w(ρ, z),Ω(ρ, z),Λ(ρ, z).
We have made a gauge transformation to the unique Weyl-Lewis-Papapetrou coordinates for

any stationary, axisymmetric spacetime, up to univariate scaling of z.
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5.3 Schwarzschild in Weyl-Lewis-Papapetrou

5.3.1 Schwarzschild Background

We want to describe spacetimes in with a Schwarzschild background. Therefore we expect there
to exist V = V0 + δV,w = w0 + δw,Ω = Ω0 + δΩ,Λ = Λ0 + δΛ, where the variables with the
naught-subscripts describe Schwarzschild background metric, and the δ variables are perturbations
that keep the metric stationary and axisymmetric. Let’s solve for the Schwarzschild solution only
in terms of the background first, with no perturbations; we need to get the metric into the form:

ds2 = −V0(dt− w0dφ)2 + V −1
0 ρ2dφ2 + Ω2

0(dρ2 + Λ0dz
2) (5.19)

Note that at the end of our calculation, we expect to choose coordinates so that Λ0 = 1 because
Schwarzschild is Ricci-flat.

5.3.2 Motivation of WLP Coordinates

By Birkhoff’s Theorem, the Schwarzschild metric (5.14) is axisymmetric and stationary (in fact it
is static):

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (5.20)

Therefore we should be able to write the metric in Weyl-Lewis-Papapetrou form.
We keep the time and azimuthal directions the same, as it is natural to pick ∂

∂t and ∂
∂φ as our

Killing vector fields. Therefore were are transforming the spatial coordinates r and θ only, from
those that are spherically symmetric to those cylindrically symmetric.

We identify that V0 = 1− 2m
r and w0 = 0, so our metric is in the form:

ds2 = −V0(dt− w0dφ)2 + V −1
0 dr2 + r2(dθ2 + sin2 θdφ2) (5.21)

We see that the standard spherical to cylindrical (r sin θ 7→ ρ, r cos θ 7→ z) will not suffice because
the only dφ2 term in the line element will be r2 sin2 θdφ2 7→ ρ2dφ2, and in the WLP form, we need

V −1
0 ρ2dφ2. Thus, we make our transformation V

1/2
0 r sin θ 7→ ρ, so that r2 sin2 θdφ2 7→ V −1

0 ρ2dφ2.
Our transformation is so far defined by

ρ = V
1/2

0 r sin θ =
√
r2 − 2mr sin θ (5.22)

=⇒ dρ =
r −m
V

1/2
0 r

sin θdr + V
1/2

0 r cos θ︸ ︷︷ ︸
ρ̃

dθ (5.23)

We see that ρ̃ = V
1/2

0 r cos θ is the trigonometric conjugate of ρ = V
1/2

0 r sin θ (i.e. ρ̃2+ρ2 = V0r
2).

And with a clever definition of z, we have

z = (r −m) cos θ (5.24)

=⇒ dz = cos θdr − (r −m) sin θ︸ ︷︷ ︸
z̃

dθ (5.25)

where z̃ = (r −m) sin θ is the trignometric conjugate of z = (r −m) cos θ.
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We see a good sign that z̃

V
1/2
0 r

appears in (5.23) and ρ̃

V
1/2
0 r

appears in (5.25).

So with this transformation:

t = t

ρ = V
1/2

0 r sin θ =
√
r2 − 2mr sin θ

z = (r −m) cos θ

φ = φ

(5.26)

(5.27)

(5.28)

(5.29)

we have

dt = dt

dρ = V
−1/2

0 r−1z̃dr + ρ̃dz

dz = V
−1/2

0 r−1ρ̃dr − z̃dθ
dφ = dφ

(5.30)

(5.31)

(5.32)

(5.33)

Therefore, we have in terms of the auxiliary variables ρ̃ = V
1/2

0 r cos θ and z̃ = (r −m) sin θ,

=⇒ z̃dρ+ ρ̃dz = V
−1/2

0 r−1(z̃2 + ρ̃2)dr (5.34)

=⇒ dr =
V

1/2
0 r

z̃2 + ρ̃2
(z̃dρ+ ρ̃dz) (5.35)

=⇒ ρ̃dρ− z̃dz = (z̃2 + ρ̃2)dθ (5.36)

=⇒ dθ =
1

z̃2 + ρ̃2
(ρ̃dρ− z̃dz) (5.37)

Substituting into the metric,

ds2 = −V0(dt− w0dφ)2 + V −1
0 ρ2dφ2 +

�
��V −1

0
��V0r

2

(z̃2 + ρ̃2)2
(z̃dρ+ ρ̃dz)2 + r2 (ρ̃dρ− z̃dz)2

(z̃2 + ρ̃2)2
(5.38)

ds2 = −V0(dt− w0dφ)2 + V −1
0 ρ2dφ2 +

r2

(z̃2 + ρ̃2)�2

(
��

���(z̃2 + ρ̃2)dρ2 +���
��(z̃2 + ρ̃2)dz2

)
(5.39)

ds2 = −V0(dt− w0dφ)2 + V −1
0 ρ2dφ2 +

r2

z̃2 + ρ̃2

(
dρ2 + dz2

)
(5.40)

We see that we’ve chosen z correctly so that Λ0 = 1 and

Ω2
0 =

r2

z̃2 + ρ̃2
=

r2

(r2 − 2mr +m2) sin2 θ + (r2 − 2mr) cos2 θ
(5.41)

=
r2

(r2 − 2mr) +m2 sin2 θ
(5.42)

Therefore we have for the Schwarzschild background

ds2 = −V0(dt− w0dφ)2 + V −1
0 ρ2dφ2 + Ω2

0

(
dρ2 + Λ0dz

2
)

(5.43)
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So our Weyl-Lewis-Papapetrou functional degrees of freedom are, as functions (r, θ),

V =

(
1− 2m

r

)
+ δV

w = 0 + δw

Ω2 =
r2

(r2 − 2mr) +m2 sin2 θ
+ δΩ2

Λ = 1 + δΛ

(5.44)

(5.45)

(5.46)

(5.47)

5.3.3 Coordinate Singularities of Background Schwarzschild

Despite the curvature singularity at r = 0, we have coordinate singularities when Ω2
0 →∞, i.e.

0 = r2 − 2mr +m2 sin2 θ (5.48)

0 = (r −m)2 −m2 cos2 θ (5.49)

0 = (r −m+m cos θ︸ ︷︷ ︸
R+

)(r −m−m cos θ︸ ︷︷ ︸
R−

) (5.50)

With the auxiliary variables R±, we rewrite our WLP functions with the substitution r = 1
2(R+ +

R− + 2m):

V =
R+ +R− − 2m

R+ +R− + 2m
+ δV

w = 0 + δw

Ω2 =
(R+ +R− + 2m)2

4R+R−
+ δΩ2

Λ = 1 + δΛ

(5.51)

(5.52)

(5.53)

(5.54)

ρ2 + z2 = (r2 − 2mr) sin2 θ + (r −m)2 cos2 θ (5.55)

= (r −m)2 +m2 cos2 θ −m2 (5.56)

= (r −m±m cos θ)2 −m2 ∓ 2(r −m)m cos θ (5.57)

= R2
± −m2 ∓ 2mz (5.58)

=⇒ ρ2 + (z ±m)2 = R2
± (5.59)

=⇒ R± =
√
ρ2 + (z ±m)2 (5.60)

and thus our WLP functions are now functions of (ρ, z).
The coordinate singularities corresponding to R± = 0 are now at (ρ, z) = (0,±m) for all t and

φ.
We also have a coordinate singularity when ρ→ 0, so all the coordinate singularities are at the

line ρ = 0 in the spacetime, which includes the (ρ, z) = (0,±m) singularity as well.
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5.4 Mathematica for perturbations of Kerr and Schwarzschild

I was able to calculate the Einstein operator in WLP coordinates for both Kerr and Schwarzschild
backgrounds. The Kerr solution in WLP form I used are from Jones and Wang[4]. The solutions
with the explicit coordinates are too long to reproduce here in the progress report, but are included
in the companion Mathematica files on the DCC.

There were many facts about WLP computed in Mathematica. One observation is that hab
traceless in WLP. However WLP is confirmed to not be a Lorenz gauge. Furthermore, WLP does
not seem to be obviously in a form of a generalized Harmonic gauge, but future analysis is needed.

5.5 The action of Einstein operator in WLP gauge: Ricci-flat

[This part was quite difficult, even for with the Ricci-flat simplification. The manipulations here
are not referenced anywhere and it took a lot of sweat and trial and error to get the following
result.]

5.5.1 Constraint equations

From Gab = 0, we have ostensibly 6 non-zero equations of motion, which correspond to G00, G03, G33

and G11, G12, G22.
From the first three, we can construct the combinations

e2γ
((
V −2 − ρ−2w2

)
G00 + e2γρ−2w2

)
G33 = ~∇

(
V −1~∇V + ρ−2V 2w~∇w

)
(5.61)

e2γρ−2 (wG00 +G03) = ~∇
(
ρ−2V 2~∇w

)
(5.62)

where ~∇ is the gradient under the flat metric ds2 = ρ2dφ2 + dρ2 + dz2, not ds2 = gabdx
adxb

We have G00 = G03 = G33 = 0 if and only if

0 = ~∇ ·
(
V −1~∇V + ρ−2V 2w~∇w

)
(5.63)

0 = ~∇ ·
(
ρ−2V 2~∇w

)
(5.64)

and the Bianchi identity ∇aGab = 0 is satisfied.
Furthermore, we have G11 = −G22 automatically, so we are left with

0 = −G11 = G22 =
1

4V 2

(
(∂ρV )2 − (∂zV )2

)
− V 2

4ρ2

(
(∂ρw)2 − (∂zw)2

)
− ∂ργ

ρ2
(5.65)

0 = G12 =
∂zγ

ρ2
− 1

2V 2
(∂ρV )(∂zV ) +

V 2

2ρ2
(∂ρw)(∂zw) (5.66)

which are compatible because given eqs. (5.63) and (5.64), ∂ρ∂zγ = ∂z∂ργ is true.
We have shown that there are 4 equations (2 of which are compatible) consistent with 3 metric

variables in the Ricci-flat case.

5.6 Non-Ricci-flat Perturbations of Ricci-flat Background

Since we know Gab = T
(0)
ab + εT

(1)
ab + O(ε2) and T

(0)
ab = 0, for sake of brevity, we use the notation

Tab ≡ T
(1)
ab , so that for the order ε1 term, G

(1)
ab = Tab.
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5.7 Linearized Einstein Field Equations of WLP perturbations

5.8 z Gauge Fixing

5.8.1 z 7→ f(z)

We have a remaining gauge freedom in WLP, z 7→ f(z) keeps the metric in WLP form. We need
to fix the gauge completely to perform explicit numerical calculations. The map z 7→ f(z) changes
the WLP metric by

ds2 =− V (dt− wdφ)2 + V −1
(
ρ2dφ2 + e2γ(dρ2 + e2λdz2)

)
(5.67)

7→ − V (dt− wdφ)2 + V −1
(
ρ2dφ2 + e2γ(dρ2 + e2λ (∂zf)2 dz2)

)
(5.68)

= −V (dt− wdφ)2 + V −1
(
ρ2dφ2 + e2γ(dρ2 + e2(λ+log ∂zf)dz2)

)
(5.69)

So the gauge freedom is

λ 7→λ+ log ∂zf (5.70)

=⇒ λ0 + εδλ 7→λ0 + εδλ+ log ∂zf (5.71)

We first fix our gauge so that λ0 = 0, so the remaining gauge freedom is, for any function G(z)
that is O(ε),

δλ 7→δλ+ log ∂zf (5.72)

∂zδλ 7→∂zδλ+
∂2
zf

∂zf︸︷︷︸
G(z)

(5.73)

which means once we fix our gauge with G(z) completely we have the condition that

∂zδλ+G(z) = H(ρ, z) (5.74)

for an a priori unknown function H(ρ, z)
From the six original linearized EFEs, and imposing the background Wald equations we have

∂ρδλ = ρ(T11 − T22) (5.75)

=⇒ ∂z∂ρδλ = ρ∂z(T11 − T22) (5.76)

Taking the ρ partial derivative of eq. (5.74) yields,

∂ρ∂zδλ = ∂ρH (5.77)

=⇒ ∂ρH = ρ∂z(T11 − T22) (5.78)

Assuming H(ρ = R, z) = 0, for some R (which could be ∞, we have

=⇒ H(ρ, z) =

∫ ρ

R
ρ′∂z

(
T11(ρ′, z)− T22(ρ′, z)

)
dρ′ + C(z) (5.79)

for some arbitrary constant C(z).
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But this C(z) degree of ambiguity for H(ρ, z) is exactly the gauge degree of freedom G(z) in
eq. (5.74)! Therefore, we have

∂zδλ =

∫ ρ

R
ρ′∂z

(
T11(ρ′, z)− T22(ρ′, z)

)
dρ′ + C̃(z) (5.80)

where C̃(z) = C(z)−G(z).
For our numerical purposes, we can just set C̃(z) = 0 to completely fix our z gauge degree of

freedom.

5.8.2 Flat Laplacian of δλ

Therefore we have explicitly, ∂ρδλ and ∂zδλ, so we can construct the flat laplacian of δλ under the
metric ds2 = ρdφ2 + dρ2 + dz2,

∇2δλ =

(
∂2
ρ +

∂ρ
ρ

+ ∂2
z

)
δλ =

∫ ρ

∞
ρ′∂2

z

(
T11(ρ′, z) + T22(ρ′, z)

)
dρ′ + ρ∂ρ (T11 + T22) + 2(T11 + T22)

(5.81)

along with the flat laplacians of δV, δw, and δγ we found earlier.

5.9 Dynamical Chern-Simons

5.9.1 Equations of Motion

With θ coupled to the Pontryagin density, the equations of motion are

Gab + εCab = ∂aθ∂bθ −
1

2
gab∂

cθ∂cθ (5.82)

∇a∇aθ = − 1

16
ε∗RR = − 1

16
εcdefR

ef
ab Rabcd (5.83)

where using Mathematica and xTensor,

Cab =
1

8

[
−θεbdef∇c∇fRacde −∇cθεbcef∇dRadef −∇d∇cθRacef εbdef −∇cθεbdef∇fRacde

]
+ (a↔ b)

(5.84)

5.9.2 Over a Kerr background

With the Kerr solution as the background, i.e. g
(0)
ab , we have

�(0)θ = −ε∗R(0)R(0) (5.85)

= 96(GM)2aµr(3r
2 − a2µ2)(r2 − 3a2µ2)

Σ6
(5.86)

where the second line is from [5], in rationalized Boyer-Lindquist coordinates.
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6 Numerical Results/Setup

6.1 Linearized equations

Despite the redundancies in Gab = T eff
ab , from section 5.8.2, we can now cast the linearized equations

into the form

∆


δV
δw
δγ
δλ

 ≡ ∆0


δV
δw
δγ
δλ

+ lower order terms = source (6.1)

where ∆0 is the induced 3-Laplacian of the Kerr background. The problem is now manifestly
elliptic and well-posed. We can invert ∆0 numerically, so in principle an iterative scheme can invert
∆.

6.2 Newton-Raphson method

Given this form, we use an iterative scheme to solve for these four metric variables in ∆~v = ~S

initial guess: ∆0~v0 = ~S0

∆(~v0 + δ~v) = ~S

∆~v0 + ∆0δ~v ≈ ~S

=⇒ ∆0δ~v ≈ ~S −∆~v0

iteratively solve: δ~v ≈ ∆−1
0

(
~S −∆~v0

)

This scheme is a generalization of Newton’s method for root finding that we all know and love
from elementary calculus.
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6.3 Maximum Principle

We use the maximum principle to check a sign in our iterative scheme, to make sure it has a chance
of converging,

Theorem 6.1 Given a Laplacian D2, and the differential equation of u of the form D2u = fu for
some function f ≤ 0 at all points, u cannot have a maximum in the interior of the domain.

If u has a maximum at ~x∗ on the interior of the domain then D2u(~x∗) < 0 at some point the
open neighborhood around ~x∗. But then fu ≥ 0 at that point in the neighborhood around ~x∗.
Contradiction.

Therefore, we need to make sure that f is not non-negative at all points in order to maximize
u on the domain. In fact, in our application of this theorem f < 0 for all points.

6.4 Transformation to Rational-Polynomial Boyer-Lindquist Coordinates

Because we want to invert using the numerical scheme, and since ∆0 is invertible in Boyer-Lindquist
analytically, we convert our differential equations into Boyer-Lindquist to complete the Newton-
Raphson method. We can show that for a λ0 = 0, a Ricci-flat background, the background scalar
laplacian is

∇2
WLPf = V0e

−2γ0

(
∂2
ρ +

1

ρ
∂ρ + ∂2

z

)
f(ρ, z) =

1

Σ

(
∂r∆∂r + ∂µ(1− µ2)∂µ

)
f(r, µ) = ∇2

BLf (6.2)

So the principle part of the differential equations will remain exactly the same, with no extraneous
lower order terms.

6.5 Loss of Gauge after Boyer-Lindquist Transformation

A preliminary result is the loss of the z gauge freedom once we transform into the Boyer-Lindquist
coordinates.

6.6 Demonstration Model

We use non-minimally coupled scalar to the Pontryagin-Chern density, ∗RR ≡ −1
2ε
abcdRabefR

ef
cd ,

over a Kerr background.
From eq. (4.81), we have the equation (with the conventional coupling factor of 1

8 from [5])

�(0)θ(1) = − 1

16
εabcdR

(0)
abefR

(0)
cd

ef
(6.3)

7 Challenges

• Check if ADM equations are automatically satisfied or need to be constrained during the
numerical evolution.

• Invert Linearized equation

• Relaxation code and numerics

• boundary conditions, and compactifying coordinates to bring in infinity.
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8 Summary

We have made much progress so far this summer in analyzing black holes of alternative gravity
theories. The analytics is mostly complete. However there are a few unresolved stumbling blocks
with the numerics that prevent us from fully simulating these black holes.

The current goals are to finish simulating these black holes in dynamical Chern-Simons. Then
apply the method to Einstein-dilaton-Gauss-Bonnet gravity. If a possible analytic inversion of ∆
can be found then our method would drastically be simplified.

After this, we hope to implement the formalism directly in the Spectral Einstein Code (SpEC),
and compute physically interesting quantities of these black holes, e.g. the thermodynamic en-
tropy, the innermost stable circular orbit (ISCO), orbital frequencies, and the locations of the new
horizons.

In the long term, we hope to work on non-stationary perturbations, looking at the quasi-normal
modes of these black holes, computing solutions for binary black holes and their coalescences with
these corrections to GR. Hopefully with these, we can generate gravitational waveforms at infinity
and inform search pipelines of the gravitational wave detectors.
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Appendices

A Miscellaneous Identities Used in Proofs

A.0.1 Metric

∂gab

∂gcd
=
∂(gaa

′
gbb
′
ga′b′)

∂gcd
=
∂gaa

′

∂gcd
gbb
′
ga′b′ + gaa

′ ∂gbb
′

∂gcd
ga′b′ + gaa

′
gbb
′ ∂ga′b′

∂gcd

=
∂gaa

′

∂gcd
δba′ +

∂gbb
′

∂gcd
δab′ + gaa

′
gbb
′
δca′δ

d
b′

=
∂gab

∂gcd
+
∂gba

∂gcd
+ gacgbd

=⇒ ∂gab

∂gcd
= −gacgbd

(A.1)

A.0.2 Jacobi Formula

For a generic derivative operator ∂, one can show the following two facts:

log detA = tr logA (A.2)

∂ trF (A) = tr

(
d

dA
F (A)∂A

)
(A.3)

Then one can prove:

1

detA
∂ detA = ∂ log detA = ∂ tr logA

= tr

(
d

dA
logA∂A

)
= tr

(
A−1∂A

)
=⇒ ∂ detA = detA tr

(
A−1∂A

)
= −detA tr

(
A(−A−2)∂A

)
∂ detA = −detA tr

(
A∂(A−1)

)
(A.4)

A.0.3 Metric Density

Let g ≡ det[gµν ] in this context. We use our result from (A.4). For variational derivatives w.r.t. to
the inverse metric,

δg = −ggµνδgµν

δ
√
−g =

1

2
√
−g
× (−δg)

δ
√
−g = −1

2

√
−ggµνδgµν

(A.5)
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For partial derivatives,

∂ig = ggab∂igba

∂i
√
−g =

1

2
√
−g

∂i(−g)

∂i
√
−g =

1

2

√
−ggab∂igab

(A.6)

A.0.4 Connection Coefficients

Γiij =
1

2
gia(��

�∂igaj + ∂jgia −��
�∂agij) (A.7)

=
1

2
gia∂jgia (A.8)

Γiij =
1

2g
∂jg (A.9)

or Γiij =
1√
−g

∂j
√
−g (A.10)

gjkΓijk =
1

2
gjkgia(∂jgak + ∂kgja − ∂agjk) (A.11)

= gjkgia∂jgka −
1

2
gjkgia∂agjk (A.12)

=���
��

��
gjk∂j(g

iagka)− gjk∂jgiagka −
1

2
giagjk∂agjk (A.13)

= − 1√
−g
√
−g∂agia −

1√
−g

gia∂a
√
−g (A.14)

gjkΓijk = − 1√
−g

∂a
(√
−ggia

)
(A.15)

A.0.5 Covariant Derivatives

∇ivi = ∂iv
i + Γiijv

j (A.16)

=
1√
−g
√
−g∂ivi +

1√
−g

∂j
√
−gvj (A.17)

∇ivi =
1√
−g

∂i(
√
−gvi) (A.18)

=⇒ ∇i∇iφ =
1√
−g

∂i(
√
−g∂iφ) (A.19)
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As a consistency check, we do the divergence of a covector field:

gij∇iωj = gij∂iωj − gijΓkijωk (A.20)

=
1√
−g
√
−ggij∂iωj −

1√
−g

∂i(
√
−ggik)ωk (A.21)

∇iωi =
1√
−g

∂i(
√
−ggijωj) (A.22)

which agrees with (A.18)
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