Seismometer Isolation for Noise Cancellation at 40m Lab

LIGO SURF 2016 Aakash Patil

Mentors: Gautam Venugopalan, Koji Arai, Rana Adhikari

California Institute of Technology LIGO Project, MS 18 - 34 Pasadena, CA 91125. E - mail: info@ligo.caltech.edu

Overview

- Motivation & Objectives
- Experimental Setup
- Preliminary Results
- Future Work
- Summary

Motivation & Objectives

- To improve seismometer's sensitivity at low frequencies
- To develop enclosure for the seismometer at the LIGO 40m lab
- To protect seismometer from environmental fluctuations which include thermal and electromagnetic fluctuations.

Experimental Objectives

Temperature Measurement

AD592 CZ Temperature Transducer output current ∝ absolute temperature

Acromag Busworks I/O Card

RPi Model B GPIO- Multipurpose

Seismometer Enclosure

Combinations

INSIDE

5 mm

Insulation

Seismometer & Enclosure

Temperature Measurement

Temperature Fluctuation

ADC Noise

Future Work

- Acromag setup
- Measure actual transfer function
- Design a temperature controller
- Characterisation of heater
- Enclosure clamping
- Connections to single seismometer wire.

Insulation is applied to the enclosure.

Problems in using RPi ADC have been identified.

Acromag Busworks I/O cards are NOT successfully installed and some problems remain to be solved.

Insulated and Uninsulated Enclosure

For Existing Enclosure

Transfer Function

For Existing Enclosure

Magnitude Squared Coherence

For Enclosure with One Sided insulation

For Enclosure with One Sided insulation

Frequency in Hz

For Enclosure with Two Sided Insulation

Transfer Function

For Enclosure with Two Sided Insulation

Magnitude Squared Coherence

PSD Data

octave:72> min(pxx1) ans = 1.7612e+06 octave:73> max(pxx1) ans = 1.2466e+09 octave:74> min(pxx2) ans = 1.0575octave:75> max(pxx2) ans = 10.445octave:76> mean(pxx1) ans = 1.7290e+07 octave:77> mean(pxx2) ans = 3.7990

strength of association between two series or power transfer between input and output of a linear system. For an ideal constant parameter linear system with a single input and single output, the coherence will be equal to one.

$$U=rac{1}{R}=rac{\dot{Q}_A}{\Delta T}=rac{k}{L}$$