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Abstract

Gravitational waves serve as a unique opportunity to test the strong-
field highly-dynamical regime of Einstein’s theory of General Relativity.
In this project, we explored the possibility of detecting deviations from
Einstein’s predictions by examining the speed of gravitational waves. We
have studied continuous gravitational waves in order to determine whether
it will be possible to make a statement about the compatibility of different
speeds with our observations. By considering known amplitude and phase
modulation to the waveforms, we constructed a system to do a targeted
search across data for signals with alternate speeds of continuous waves.
Searching over actual LIGO data placed constraints on deviations from
the speed of light by means of Bayesian analysis of simulated/real data
corresponding to different sources.

1 Project Description

Gravitational waves (GWs) were predicted by Einstein in 1916 as a part of
his development of the Theory of General Relativity (GR) and finally detected
directly in September 2015 by the Laser Interferometer Gravitational wave Ob-
servatory (LIGO) [1]. Now that direct measurements of the phenomenon are
possible, we can start to analyze its properties in more depth. We will attempt
to directly measure the speed of GWs by analyzing months of data and searching
for modulation of long-term GW signals due to Doppler shifts with periodicity
of a sidereal day for different sources.

In order to measure these modifications to any accuracy, we have to take
in a long period of data. We therefore will avoid sources like the black hole
mergers that have already been observed with short durations, and focus on
possible sources of gravitational waves which would have longer and more stable
emissions. These sources, primarily rotating neutron stars (e.g. pulsars), are



expected to emit signals with very consistent frequencies and long durations but
small amplitudes, generally known as continuous waves (CWs). This research
will focus on known pulsars which could emit CWs, with data from the Australia
Telescope National Facility pulsar catalogue (ATNF) [2]. For scale, the ATNF
lists 2536 known pulsars, 291 of which are within the LIGO bandwidth (rotating
at over 15 Hz).

When stationary relative to the source, one would observe the wave as a
simple sinusoid, but due to the detector’s motion relative to the source there
is a significant frequency modulation arises due to Doppler-like effects. The
mathematical framework to measure these GW signals (including heterodyning
data) have been well established in the context of GWs and CWs [3, 4, 5].
However, since the first of those papers was published, GWs (but not CWs)
have been observed and there have been major improvements to the sensitivity
of the detectors.

2 Problem Description

In order to use the Doppler shifts of the data to measure the speed of gravi-
tational waves, we must understand all of the different effects which shape a
signal before it gets to us. We primarily consider the source’s spin, the detector
motion with respect to the source, and the detector orientation in this analysis.
First, we need to understand how the signal relates to the motion of the
source. A basic GR result says that the frequency of the wave is double that of

the source, i.e.
vgw = 2Vs;m'n (1)

The source should emit a sinusoidal signal with some height dependent upon
the physical characteristics of the source and the distance of the observer from
the source

h(ty) = Asin(0(1,)). (2)

Here , t,, is the time as measured from a source at rest with respect to the source
and 6(t,) is found according to the Taylor expansion, with consideration of (1),
to be

Iy 1.
0(t,) = 0y + 47 <1/tp + 5mtf, + 6ut§) : (3)

where 6 is a fiducial phase derived from an arbitrary starting time and a dot
indicates time derivatives. Because we can observe the actual rotation of the
source by using its radio emission, we know these incredibly well. For younger
pulsars will often have unexplained jumps in their frequency that will quickly die
down, called glitches, which can give more accurate pictures of the waveform
than the above analytical model. These are seen in electromagnetic (radio)
observations and can be taken as known ephemerii (from ATNF [2]). If the
speed of gravitational waves is significantly different than the speed of light, c,
this may render signals invisible, but these data will assume a small deviation,
as predicted in most theories [3].



Next, we need to understand the sensitivity of the detector. Unlike a tele-
scope, which is movable and limited in its observation region, LIGO is an ob-
servatory that is sensitive to signals from every direction and cannot be aimed.
This means that the detectors should be modeled like antennas which have sen-
sitivity based on the polarization of the signal, the location of the source, and
the orientation of the detector. We can define a set of vectors which define
the detector: d, points from the center of the Earth to the detector, d, and
d, are unit vectors that point along its arms. We then define the orientation
of the pulsar with unit vectors: w, is the vector from the source toward the
detector, w, points along the local East orientation for the pulsar, and w, is
perpendicular to both of those at a local North. This can be seen below:

Figure 1: TEMPORARY IMAGE This image shows the definitions of the vec-
tors which define the source-detector system.

GR predicts that CWs would have two polarizations: plus (+) and cross
(x). Waves with these polarizations stretch spacetime perpendicular to their
direction of propagation: shrinking it in one direction and expanding it in the
other. These two polarizations are almost the same, excepting a 45° rotation
from one to the other (hence their names). The detector sensitivity to each will
be different, based on the geometry of the setup. Using the above definitions,
we can derive the following sensitivities, or antenna patterns (APs):

Fo= M d (v d) A (a0

Fr = (Wy - di)(Wy - o) — (Wa - dy) (W, - dy). (5)
The changing nature of the observatory position implies that the antenna

pattern varies across a sidereal day and affects the amplitude of the signal, lead-
ing to amplitude modulation (AM). These equations, if expanded analytically,



can be written as trigonometric functions in terms of twice the azimuthal angles
of the source, i.e. we will expect a period of half a day as well as a full day
(diurnal) cycle.

Now, we can actually discuss the Doppler and relativistic delays. This can
be expressed as the sum:

ty,=t+ Ag + Ag + Ag, (6)

where t;, is the time measured from the Solar System Barycenter (SSB), ¢ is the
time measured on Earth, Ag is the Einstein delay due to Special Relativity, Ag
is the Shapiro delay from GR, and Ay is the Rgmer delay due to changing dis-
tances within orbits/rotations. Ap is practically constant in relevant timescales,
so it is ignorable. Ag is of order 10~7s [6], far below our timescales, making
it ignorable. We only have to calculate the Rgmer delay. This is given by the
formula: o
7en

Cqg

Ag = (7)
where 7 points from the SSB to the detector, 7 is the unit vector pointing from
the source to the SSB, and ¢, is the speed of the gravitational wave. We will
assume 7 is constant with direction 79, as the source is effectively at rest relative
the SSB. We know 7 has two components: 7= R + & where R points from the
SSB to the center of Earth and § points from Earth to the detector. R oscillates
over a year while § has periodicity of a sidereal day. For most purposes, we will
mostly ignore the influence of ‘Cﬁl—?‘ as z—ﬂ ~1.6x 1072 ‘% (and it should be
mentioned that |Z—f’ ~ 1.55 x 107%¢).

The Rgmer delay is where the speed of the gravitational wave comes into
play as it induces a frequency modulation (FM). A very small speed would
yield a very significant Rgmer delay. Currently, the LIGO Algorithm Library
(LALSuite) assumes that ¢, = c.

We now know how to model a wave with all of the applicable dynamics.
Now that the wave has traveled to the detector, the raw data goes through a
long process in order to search for a signal. For continuous waves with a known
source, the procedure is the following:

1. Raw data is collected

This step is beyond the scope of this project, but it suffices to mention
that the data is dominated by noise and is sampled at f; = 16,384 Hz.

2. Heterodyne

We want to see the amplitude modulation of the signal, so we want
to use heterodyning. First, we decompose the signal h(t) into:

h(t) = A(t)e?® + A*(t)e 00 (8)
for some A(t) and 0(t). As others have shown [8][7], we know the following:

h(t) = ha () cos O(t) + hy (t) sin (%) 9)



this allows us to compute calculate A(t) with some magnitude hy =
\/ 3+ hZ:

1+ cos?. 1COS ¢
A(t) = ho <4F+(t) +=

F(0) (10)

where ¢ is the relative inclination angle of the source relative the Earth.
We also know that 6(t) is derived from the source rotation as shown in eq.
3, so we can actually make this information useful.

However, we do not want to look for the high frequency from the pulsar
(via (3)) as their data can be boiled into just the slower AM and FM of the
antenna pattern implied by egs (4) & (5). Heterodyning the process which
allows us to achieve that. We can take the entire strain and multiply it
by e~ to get

Pnet (t) = e70® - n(t) = A(t) + A*(t)e 20 (11)

which yields a very low frequency and a very high frequency one. For the
Crab Pulsar, this would have frequencies of about 0.00002 Hz (an inverse
sidereal day) and 120 Hz (as the Crab rotates at about 60 Hz), respec-
tively. It may be important to note here that even though the signal was
purely real, we now are working in the complex domain.

It should also be mentioned that since the Rgmer delay is implemented in
this step, this pre-processing may reveal the difference in speed as current
implementations assume ¢4 = c.

If that assumption is not true, however, eqn. (11) does not hold. Using
eq. (8), we see that the waveform is dependent upon the speed of CWs.
Therefore we can define 6(¢;v) for some perceived speed of gravitational
wave v. Let 60(t) = 0(t;cq) — 0(t;¢). This means that in the heterodyne
we may not cancel out the modulation completely and could instead be
left with

hhet(t) _ A<t)6i50(t) + A*(t)efi(e(t;cg)Jre(t;c)) (12)

. Filters (e.g. Butterworth) applied

This process is not yet applicable to this research, but this low pass
filter (LPF) removes some noise and much of the high frequency features.

. Downsample

Downsampling serves as another LPF, where higher frequency signals
are completely lost, so the second term in eq.(8) is removed. As the name
implies, downsampling involves reducing the number of points in the data
being analyzed from the points present. To do this for CWs, LIGO takes
one minute sized chunks and takes their average. This means that from



the heterodyned signal s[i], sampled at about a high frequency, the new
signal will have terms

| M
By, = i 1—21 hhet(ts) (13)

where M is the total number of samples in a minute.[7] For actual LIGO
data, this takes the sampling rate from 16384 Hz to eTlo Hz.

Downsampling and low pass filtering removes the high frequency signal from
(12). This yields the following measurement of speed:

has, net () isoqr)
J = ¢ . 14
D) e (14)

Seeing this modulation amid the noise is now equivalent to finding the speed of
gravitational waves.
3 Progress

I created “toy models” for all of the above, using generic or standard assump-
tions. This was my primary focus for my first six weeks.

In order to visualize the Rgmer delay, one can plot it and find something
like the following:

Roemer Delay over 1 sidereal day
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Figure 2: The Rgmer delay over a sidereal day approximately makes a sinusoid,
with smaller effect across a year.

It is significant that this is a sinusoid and that this has a non-negligible mag-
nitude. Once we understand the delay, we want to plot the antenna patterns.
We set d; and d, to be the x and y axes, with source position being arbitrary.
Below are three pictures for the simplest case, with source aligned with the
detector|8]:
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Figure 3: Antenna patterns for the two GR polarizations

The distance from the center origin at any angle indicates the sensitivity
of the detector to that polarization at that angular position relative to the
detector arms (the x and y axes). It should be noted that the magnitude of
subfigure 3.c is invariant under changes of the relative rotation angle, as plus
and cross polarizations become identical and switch functions under certain
rotations. These figures, while interesting, are not particularly useful in and of
themselves. The sensitivity changes over a day because of the Earth’s rotation.
This is dependent heavily on the positions of the observatory and the source (via
(4) and (5)). Implementing these for the Crab Pulsar and both observatories
then yields the following plots for the AM A(¢):
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Figure 4: Overall sensitivity to Crab pulsar over a day at the (a) Hanford and

(b) Livingston Observatories

In order to check that this has the two frequencies we expect, we Fourier
transform it. If we look closely, we can see the two frequencies we anticipate, as

shown below.
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Fourier transform of Lambda
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Figure 5: Fourier transform of the data, zooming in on the barely noticeable
bumps near 0; blue is real, green is imaginary. The three visible bumps represent
an inherent term at frequency 0, the diurnal cycle at about 1/86164 Hz, and
the twice diurnal cycle at about 1/43082 Hz. These plots agree with the official
LIGO plots made in LALSuite.

It is at this point necessary to implement the mathematical concepts estab-
lished using eqs. 8 - 13. To show this in practice, we generated a day of a
fake signal with amplitude modulation A(t) = 5 + cos( g2t ) and fast sinusoid
(signal) of h(t) = A(t)-sin(27-0.01Hz -t). For this research, the frequency (0.01
Hz) would be much higher (e.g. 60 Hz), but for visualization it is low frequency.

The data are shown below:
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Figure 6: The simulated signal for a some time. Note the amplitude modulation.



The amplitude follows a sinusoidal progression at about 3 times the length
of this frame. Now, since we know the 0(t) that we would plug into eqn. (11),
we can heterodyne to get the following plot:

Heterodyned data: Real and imaginary
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Figure 7: Heterodyne of the above data with known frequency evolution.

We can see the faster wave as well as the still slow wave in the amplitude
modulation which equation (11) predicts.

Next, we take that data and downsample significantly (here, downsampling
was by a factor of a few thousand), taking an average over every segment. This
eliminates the high frequency data and leaves a signal at half of the amplitude

of the waves.
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Real part of Downsampled 1 Day data
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Figure 8: Real and imaginary parts of the downsampling from the heterodyned
data. Note how the real part represents half of the amplitude of the final wave
and the imaginary part goes to zero; this reflects the original data’s purely real
component.

In the above implementation there were some simplifications. The sinusoids
were all constant in their frequency (i.e. d?6/dt*> = 0), ignoring both © and i/
terms. In reality, this is a close approximation, but not exact. We know that
the source has a rotational speed of v(t) which varies significantly. With older
pulsars, this is a pretty smooth rate, but for younger pulsars, unexpected errors
happen at a significant rate. These glitches are seen in the EM spectrum, so if
cg ~ ¢, these should align pretty well in time and allow us to use astronomical
observations during the time of observation in order to model the frequency of
the expected wave. If ¢; << ¢, this phase evolution may hurt the search, but
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that case is not expected [9]. Furthermore, this model ignores the Rgmer delay
in order to simplify the visualization. Therefore the FM has zero impact here.

4 Goals

I hope to use the MCMC package emcee in order to create probability distribu-
tion functions (PDFs) across different possible values of ¢, for different sources.

After that, I will focus on moving away from the toy models that I am
currently creating, implementing with actual LIGO data. Once we’ve analyzed
data from O1, then we will hope to see the modulation in any way, at least
giving a bound on the difference between the two speeds.

5 Challenges

Most of the challenges have been in simply doing the science and being able to
be enthused about a tough problem when I'm tired.

6 Resources

I will eventually start to use one of LIGO’s computer clusters to analyze data
if my laptop stops being sufficiently fast, but otherwise, my mentors have been
helpful enough for me to make it through.
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