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1 Project Description

Gravitational waves (GWs) were predicted by Einstein in 1916 during his devel-
opment of the Theory of General Relativity (GR) and finally detected directly
in September 2015 by the Laser Interferometer Gravitational wave Observatory
(LIGO)1. Now that direct measurements of the phenomena are possible, we can
start to analyze their properties in more depth. We will look into the measure-
ment and bounding of the speed of continuous gravitational waves by comparing
variances observed in long-term signals using the motion of the detector relative
to the source.

Unlike the black hole mergers from the three observations, certain sources of
gravitational waves are constant. These objects gives signals with very consis-
tent and long lifespans but small amplitudes, called continuous waves (CWs).
This research will focus on pulsars which could emit CWs.

The unmodified strain signal takes the form of a sinusoid (thus gravitational
waves). However, since the Earth is moving relative the source, there is a
significant shift due to Doppler Effects. Research into the methods of doing such
(including heterodyning data) have been well researched4−6, but were generally
unsuccessful in estimating the speed of GWs. However, since the first of those
papers was published there have been major improvements to the sensitivity of
the device.

2 Problem Description

Before we get the data, a lot of things happen to the signal to make it not a
perfect sine wave.

The motion of the source leads to a frequency/phase evolution of the wave.
For a simplified version, we know that the pulsar spins at ν (revolutions per
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second) but then has a slowdown of ν̇ (revolutions per second per second).
Because of this slowdown factor, we would need to have a wave with changing
frequency. In reality, we have electromagnetic observations that tell us the
actual spinning rate at any time, which involves some unpredictable breaks
from smoothness.

The rotation of the Earth leads to two more transformations.
There is a factor called the Rømer delay which deals with the time necessary

to travel the extra distance when the observatory is farther than when it is closer.
This has a period of a day (with some terms with half a day because the CWs
can go through Earth).

There is a major factor in the change in the sensitivity of the antennas. Cer-
tain angles optimize the sensitivity of the detectors, dependent on the source
position. This leads to an amplitude modulation across a half day. This is
actually most of the signal we want to see.

Once the wave travels to the detector, the raw data goes through a long
process in order to hope to see a signal. For continuous waves with a known
source, the process follows the following path:

1. Raw data is collected

2. Filters (e.g. Butterworth) applied

3. Heterodyne based on source motion (assumes c)

4. Downsample

The first process is beyond the interests of this research, but it suffices to
mention that there is plenty of noise, i.e. it’s almost exclusively noise.

The second process is also not yet applicable, but it removes some of the
aforementioned noise and much of the high frequency things.

The third process is where much of the research is happening. In this step,
the waveform is multiplied by a complex sinusoid with phase based on the source.
This step deals with the Rømer delay and should leave one fast sinusoid and one
slower one (for the Crab nebula, the fast one would be at about 100 Hz and the
slow one would be at about 0.00002 Hz). The faster sinusoid is a fast version
of the signal while the slow sinusoid represents the amplitude modulation from
the antenna patterns.

The fourth process reduces the number of points significantly in order to
ignore the fast signal. This leads to just the amplitude modulation, with mag-
nitude proportional to the strain on the observatory.

3 Progress

GO FROM h(t) to lambda(t) (That’s both heterodyning and downsampling
explained mathematically)
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There were four major things that needed to be broken down for the project:
antenna patterns, amplitude modulation, frequency modulation, and Rømer
delay.

The antenna pattern represents the sensitivity to the detector in a certain
direction to a certain polarization of GWs. This can be calculated for a single
detector either analytically or numerically. The general formula for the sensi-
tivity of a detector with two arms and zenith dx, dy, and dz and a source with
rotation direction and axes wx, wy, and wz is

F+ =
1

2
[(wx · dx)2 − (wx · dy)2 − (wy · dx)2 + (wy · dy)2]

F× = (wx · dx)(wy · dx) − (wx · dy)(wy · dy)

This is derived from the tensors for both polarizations. Plotting these for
different relative orientations yields the following plots9:

(a) Plus (F+) (b) Cross (F×) (c)
√

F 2
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×

Figure 1: Antenna patterns for the two GR polarizations

The problem becomes interesting when one considers the fact that the Earth
is revolving and therefore all the detector’s vectors are completely dependent on
time. One can prove with some private time with the above equations that the
sensitivity of the detector should have periodicity of both a day and half of a day.

We know the ideal signal h(t) consists of both polarizations in a predicable
way. We know that since the signal is real and has a sinusoidal element, there
exists a function Λ(t) and a function θ(t) such that

h(t) = Λ(t)eiθ(t) + Λ∗(t)e−iθ(t)

Based on previous workCITATION PLEASE,9, we know how to calculate this using
the antenna patterns and the magnitude of the strain, h0:

Λ(t) = h0

(
1 + cos2 ι

4
F+(t) +

i cos ι

2
F×(t)

)
(1)
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We implement these equations in order to actually discuss what would hap-
pen if a constant magnitude signal came by (as all CWs pretty much are).
For simplicity’s sake, the following graphs use data from the Crab pulsar (well
understood):

(a)

(b)

Figure 2: Overall sensitivity to Crab pulsar over a day at Hanford and Liv-
ingston Observatories

In order to check that this has the two frequencies we expect, we Fourier
transform it. If we look closely, we can see the two frequencies we anticipate, as
shown below.
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(a)

(b)

Figure 3: (a) Fourier transform for the whole range (to double the Nyquist
frequency) then (b) zooming in on the barely noticeable bumps near 0; blue is
real, green is imaginary. The three visible bumps represent an inherent term at
0, the diurnal cycle at about 1/86400 Hz, and the twice diurnal cycle at about
1/43200 Hz.

From this variable sensitivity, we know that the signal will have an amplitude
modulation and therefore we need to extract it from raw data. As mentioned,
the original signal starts as

h(t) = Λ(t)eiθ(t) + Λ∗(t)e−iθ(t)

For our purposes, θ(t) is well understood, so we are able to heterodyne the
signal. This process involves just multiplying by a complex sinusoid in order to
cancel out some of the properties of the original, i.e.

hhet(t) = e−iθ(t) · h(t) = Λ(t) + Λ∗(t)e−2θ(t)

which involves a very slow wave and a very fast one. It may be important to
note here that even though the signal was purely real, we now are dealing in
the complex domain.

In order to get rid of the fast wave, we can downsample. If we break the
entire set of data into minute sized chunks indexed by k, we can say that their
average value can be our downsampled value, i.e.

Bk =
1

M

M∑
i=1

hhet(ti)
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where M is the total number of samples in a minute.PitkinThesis For actual LIGO
data, this takes the sampling rate from 16384 Hz to 1

60 Hz.

To show this in practice, we generated a day of approximate signal with an
amplitude modulation with a much lower frequency. This data is shown below:

(a) (b)

Figure 4: (a) The simulated signal for a day; the blue coloring is actually due
to a very fast sinusoid present which is visible when zoomed in as in (b). Note
the amplitude modulation obvious in (a).

The first step is to heterodyne. The phase evolution of this signal is known,
so θ(t) leads us to

Figure 5: Heterodyne of the above data with known frequency evolution. Again,
the regions look filled due to the very fast signal.

Next, we take that data and downsample significantly (here, downsampling
was by a factor of a few thousand), taking an average over every segment. This
eliminates the high frequency data. This is not how actual LIGO data does it;
since
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Figure 6: Real and imaginary parts of the downsampling from the heterodyned
data. Note how the real part represents half of the amplitude of the final wave
and the imaginary part goes to zero; this reflects the original data’s real part.

In the above example there were some simplifications. The sinusoids were
all constant in their frequency (i.e. d2θ/dt2 = 0). In reality, this is a close
approximation, but not exact. We know that the source has a rotational speed
of ν(t) which varies significantly. With older pulsars, this is a pretty smooth rate,
but for younger pulsars, unexpected errors happen at a significant rate. These
glitches are seen in the EM spectrum, so if cg ≈ c, these should align pretty
well in time and allow us to use astronomical observations during the time of
observation in order to model the frequency of the expected wave. If cg << c,
this phase evolution may hurt the search, but that case is not expectedCITATION.

There is a small modulation of the time it takes GWs to get to the Earth.
Over a day, this delay (known as the Rømer delay) would be significant in the
transformation of the wave. This allows us to measure the Doppler shift of the
wave.

7



To explain why that is, we need to understand the formula for the delay. We
have

∆R =
~r · n̂
cg

where ~r points from the barycenter of the solar system (SSB) to the detector
and n̂ is the unit vector pointing from the source to the SSB. We will assume
n̂ is constant with value n̂0, as the source is effectively at rest relative the SSB.
We know ~r has two components: ~r = ~R + ~s where ~R points from the SSB to
the center of Earth and ~s points from Earth to the detector. ~R oscillates over a
year while ~s has periodicity of a day. For most purposes, we will mostly ignore
the influence of d~R/dt. We can calculate the Rømer delay across a day some
day in the year:

Figure 7: The Rømer delay over a day makes a sinusoid

Now that we understand the basics, we can start to analyze the possibility
of this process falsely assuming cg = c. Combining all of the above, we can find
the following equation:

h(t) = Λ(t)eiθ(t)+Λ∗(t)e−iθ(t) where θ(t) = 2φ(t) ≈ 2(φ0+ν(t+∆R)+
ν̇

2
·(t+∆R)2+

ν̈

6
(t+∆R)3

where φ(t) is the motion of the source. If we let θ(t; v) be the angle assuming a
speed v of gravitational waves. The heterodyne assumes cg = c, so

hhet(t) = Λ(t)ei(θ(t;cg)−θ(t;c)) + Λ∗(t)e−i(θ(t;cg)+θ(t;c))

Downsampling/ low pass filtering removes the fast signal. Then dividing by the
anticipated antenna pattern yields

hds,het(t)

Λ(t)
= exp (i(θ(t; cg) − θ(t; c))
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Seeing this modulation amid the noise is now equivalent to finding the speed of
gravitational waves.

4 Goals

I am hoping to be able to search for a signal in data soon using χ2 distributions.
I will then create different waveforms and compare the templates for different
speeds of GWs. After that, I will focus on moving away from the toy models
that I am currently creating, implementing with actual LIGO data. Once we’ve
analyzed data from O1, then we will hope to see the modulation in any way, at
least giving a bound on the difference between the two waves.

5 Challenges

So far, the largest challenges have been in understanding the math and imple-
menting it. I have had days lost to geometry arguments and that yields a lot of
frustration. However, it has been incredibly rewarding to work through these
problems, even sometimes spurred by a significant push in the right direction
by my mentors.

6 Resources

I will eventually start to use a cluster to analyze data if my laptop stops being
sufficiently fast, but otherwise, my mentors have been helpful enough for me to
make it through.
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