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I. FIRST PROGRESS REPORT QUESTIONS11

Write in some detail the motivation for your12

project. It should include background and an13

overview of the ongoing work in the laboratory.14

You should include references.15

See Section II for motivation and background (it is a16

draft of the introduction for my final paper). Ongoing17

work includes reading TIGER and testing-GR papers as18

recommended by Alan.19

Discuss the problem you are working on and ex-20

plain how it fits into the ongoing work. Explain21

your approach and outline the methods you ex-22

pect to use.23

I am working on running parameter estimation through24

the LALInferencemcmc pipeline for various calibration25

parameters. This is the heart of the project as it is how I26

will recover my parameter estimations after forming soft-27

ware signal injections. My approach includes using on-28

line documentation and my mentors’ recommendations29

on running instructions and parameter values.30

Discuss the progress you have made on your31

project, your goals for the next month, and the32

methods or approach you will use to reach your33

research goals.34

In the last two weeks, I have worked on/attended/been35

introduced to:36

• an introductory lecture on gravitational wave as-37

tronomy38

• the parameters for compact binary coales-39

cence/Kerr parameters, black hole perturbation40

theory41

• an introductory lecture on linear time invariant sys-42

tems control, convolution theory43

• lectures on LIGO instrumentation44

• lecture on ipython notebook, binder, signal pro-45

cessing tutorials46

• relevant LIGO instrumentation papers47

• an introduction to the parameter estimation48

pipeline LALInference49

• lalinfmcmc, a program which I ran while varying50

only the number of e↵ective runs (ne↵) from 500051

through 500 (discovered a hard cut o↵ at ne↵2000)52

• condor submit files and a dag files which I created53

by hand54

• python plots of lalinfmcmc results55

My ipython notebook is uploaded on my GitHub:56

https://github.com/mmcintosh27/LIGO and Figure 157

shows the one of plots I made of lalinfmcmc at various58

ne↵ to determine if the parameter estimates varied as a59

function of ne↵, but it doesn’t look like they do.60

61

Fig. 1.— More information about the runs are on
https://ldas-jobs.ligo.caltech.edu/

~

melissa.mcintosh/

neff1000/posplots.html and urls of the like.
62

My goals for next month include finishing my literature63

review, selecting my calibration focus, understanding the64

calibration uncertainty to a greater extent, learning how65

to modify current calibration models, developing meth-66

ods to propagate calibration uncertainty for astrophysi-67

cal and precision-GR parameters, quantitatively evaluat-68

ing systematic and statistical errors on these parameters,69

and estimating the contributions from the calibration un-70

certainties in impacting these errors.71

What are the challenges and problems you have72

met so far and what challenges and problems do73

you anticipate?74

Running lalinfmcmc seems to be done with an “.ini” file,75

but system updates has caused the file to not be func-76

tional for the past three weeks. In its place I have been77

using the command line to run lalinfmcmc and creating78

sub files for condor and dag files by hand. This is not79

as straightforward but also has the benefit of a lower-80

level understanding of the function of the .ini file. In the81

upcoming weeks I anticipate the di�culty of “stacking”82

injected signals and understanding ways of testing GR.83

What resources will you require?84

A patient mentor and perhaps some tech support.85

The rest of this document is a start on my final paper.86
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Fig. 2.— Output from LALInference mcmc for N

eff

= 1000. This project will investigate how calibration errors impact the probability
distributions of parameter estimations like in the figure on the left.
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II. INTRODUCTION87

In 1915, Einstein published his General Theory of Rel-88

ativity (GR). This theory and his following papers pre-89

dicted the existence of gravitational waves (GWs), or90

oscillations in the gravitational field caused by the accel-91

eration of massive bodies. In 1993, a Nobel Prize went92

to Hulse and Taylor [8] who discovered a pulsar system93

losing energy at the same rate as predicted by GW emis-94

sion and thus implying the existence of GWs. Then in95

2015, a direct detection of a GW occured. GW150914,96

identified as a result of a binary black hole merger, was97

observed with the Advanced Laser Interferometer Grav-98

itational Wave Observatory (aLIGO) detector network99

[2]. With this detection, the field of direct GW observa-100

tions emerged.101

GWs allow us to observe strong-field dynamics of102

space-time and astrophysical phenomena inaccessible by103

electromagnetic radiation. With the direct detection of104

GWs, experiments to test GR in large velocity, highly105

dynamical, and strong-field gravity regimes can be con-106

ducted. Because GWs cause extremely small perturba-107

tions in aLIGO (on the order of 4⇥ 10�20m [2]) the sen-108

sors and signal analyses need to be precise. Characteriz-109

ing and reducing uncertainties in aLIGO data allows us110

to reclaim as much physical information from the GW111

signal as possible.112

The goals of this work are to (1) describe both the113

calibration methods used for aLIGO and their uncer-114

tainties and (2) estimate the e↵ects of this calibration115

uncertainty on precision tests of GR. The layout of this116

paper is as follows. First, we specify our focus on cal-117

ibration errors (CEs) in Section III. Next, we summa-118

rize how aLIGO detects GW and how these CEs impact119

the instrument in IV. In V, we describe the di↵erential120

arm length (DARM) closed feedback loop transfer func-121

tion, which contains the GW wave signals and CEs for122

aLIGO. Then in VI, we outline astrophysical and cali-123

bration parameter estimation using the parameter esti-124

mation pipeline LALInference [18]. We relate previous125

research on the impact of CEs on this parameter esti-126

mation method in VII. In VIII and IX, we describe the127

software signal injections used to mimic GR and non-GR128

conforming GW signals and their use in TIGER [5], a data129

analysis pipeline for testing the strong-field dynamics of130

GR with GW signals. Finally, we recover the parameters131

used to generate the software signal injections with both132

a constant CE model, a spline interpolation CE model,133

and a frequency dependent CE model. We present the134

e↵ectiveness of the CE models in recovering a particu-135

lar GW ringdown parameter and discuss the impact the136

models would have on recovering astrophysical parame-137

ters and other precision GR test parameters in Sections138

X and XI.139

III. CALIBRATION ERRORS140

The two sources of uncertainty in any instrument are141

statistical and systematic uncertainty. Though statisti-142

cal uncertainty, a zero-mean Gaussian distribution mea-143

surement variation, is unavoidable, it can be reduced by144

taking additional observations. Systematic uncertainty145

is relatively avoidable and cannot be reduced by addi-146

tional measurements unless GR is assumed to hold true.147

Systematic uncertainty stems from an incorrect charac-148

terization of a detector and causes calibration errors. For149

aLIGO, careful calibration has to be maintained to ac-150

curately associate the frequency response of the detector151

with the motion of aLIGO’s optics and consequently re-152

duce systematic error. These calibration errors are the153

focus of this project.154

Calibration errors (CEs) are errors that pertain to the155

conversion of instrumental readout to GW strain and are156

contained in the di↵erential arm length readout (DARM)157

of aLIGO. CEs can a↵ect detection rates and parameter158

estimations; here we are concerned with parameter es-159

timation. Current CEs for aLIGO are estimated as an160

overall constant in wave amplitude and phase or with161

spline-fitting, but a new, frequency dependent estima-162

tion method also is discussed here. Previous works that163

have studied calibration error analysis for aLIGO include164

[15, 20].165

This work uses a Bayesian approach to quantify po-166

tential CE e↵ects on signal injections which mimic both167

GR and non-GR conforming GWs. It is possible that the168

CEs will blur our ability to distinguish between the two;169

we also investigate if our frequency dependent method170

of characterizing CEs will allow us to distinguish the171

GR and non-GR conforming signal injections. Though172

the few individual GW signals detected so far have had173

no statistically significant disagreement with GR and174

their statistical error exceeds their systematic error, the175

aLIGO detectors are not yet at their design sensitivities,176

louder GW sources may yet be detected, and the poten-177

tial to combine or “stack” GW observations as in [16] to178

increase sensitivity all encourage this work [4].179

IV. HOW LIGO DETECTS GWS180

aLIGO is a complex and cutting edge instrument;181

it consists of a modified Michelson interferometer with182

Fabry-Perot arms that uses power-recycling mirrors and183

resonant sideband extraction which allow it to measure184

minuscule phase propagation di↵erences via the Pound-185

Drever-Hall technique [7, 10, 12]. However, we follow186

[20] in this analysis and reduce the entire instrument187

to a sensor with a single degree of freedom: di↵erential188

arm length (DARM) perturbations. When a GW passes189

through aLIGO, the space in one direction stretches190

while the space in the other direction contracts; this arm191

length change/perturbation interrupts the constructive192

interference of laser light maintained in the arm cavities193

and some light escapes the arms to a photodetector (see194

Figure 3). This escaped light generates the signal we195

analyze to recover the GW parameters.196

Figure 4 illustrates a waveform that aLIGO might de-197

tect. From the amplitude and phase of this waveform, we198

can extract astrophysical parameters such as those listed199

in Table 1.200

In this work, we focus on a single-parameter analysis201

in the merger-ringdown regime to test GR using multiple202

events, rather than characterizing a particular GW event.203

Subsequently, we marginalize over the parameters listed204

in Table 1.205

V. DARM FEEDBACK CONTROL LOOP206

The external di↵erential arm length change, �L
ext

, is207

related to the GW amplitude, called the “strain:”208

h(f ; t) =
�L

ext

hLi (1)
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Fig. 3.— This diagram of aLIGO is from [20]. The arm cavi-
ties are contained between the reflective test masses. These test
masses are suspended from a quadruple pendulum system and are
adjusted spatially by an actuating system displayed in the upper
right corner. These adjustments allow resonance to be maintained
in the arm cavities. When resonance is disrupted by a GW passing
through, stretching one arm cavity and shrinking the other, reso-
nance is disrupted and some light escapes to the GW Readout Port
at the bottom of the figure.

Fig. 4.— A figure illustrating an inspiral-merger-ringdown of a
compact binary system from [2]. According to GR, two objects
in orbit will slowly spiral inwards due to a loss of energy and an-
gular momentum via GWs. The frequency and amplitude of the
emitted GWs increases as the orbital distance between the objects
shrink. When the objects finally merge they can radiate GWs as
a superposition of quasinormal ringdown modes. One mode will
eventually dominate with a exponentially damped, constant fre-
quency wave [4]. We observe this as a lower frequency inspiral
phase, a post-merger peak at some fixed frequency, and then a
higher frequency ringdown. In this work we investigate the dif-
ferences due to non-GR conformity as described in a parameter
pertaining to the ringdown of the GW.

TABLE 1
Parameters used to characterize a GW detection. Taken

in part from [4]

M/M� Detector-frame total mass
M/M� Detector-frame chirp mass
m1/M� Detector-frame primary mass
m2/M� Detector-frame secondary mass
M

f

/M� Detector-frame final mass
M

source

/M� Source-frame total mass
Msource

/M� Source-frame chirp mass
m

source

1 /M� Source-frame primary mass
m

source

2 /M� Source-frame secondary mass
M

source

f

/M� Source-frame final mass

q Mass ratio
�

eff

E↵ective inspiral spin parameter
a1 Dimensionless primary spin magnitude
a2 Dimensionless secondary spin magnitude
a

f

Final spin
D

L

/Mpc Luminosity Distance
z Source redshift
lnB

s/n

Log Bayes factor

where hLi ⇡ 4000m is the arm cavity length gain of209

aLIGO. aLIGO’s photodetector does not directly mea-210

sure �L
ext

but rather the current generated from the211

amount of light that has escaped from the arm cavities,212

d
err

(the DARM error signal). �L
ext

must be recon-213

structed from d
err

(f).214

d
err

(f) is measured continuously in a closed feedback215

loop. The purpose of this feedback loop (see the re-216

duced block schematic in Figure 5) is to recenter the217

mirrors used in aLIGO after the arms have been per-218

turbed by a GW or noise so that the constructive inter-219

ference/resonance of the laser is maintained. This allows220

the instrument to measure the next arm length di↵eren-221

tial as quickly as possible.222

We can reconstruct h(f ; t) from the DARM control
loop (see Figure 5):

hLi ⇡ h(f ; t)��L
ctrl

= �L
res

(2)

h(f ; t) =
1

hLi

✓
1

C(f ; t)
D(f)d

err

+A(f ; t)d
ctrl

◆

(3)

h(f ; t) =
1

hLi

✓
1 +G(f ; t)

C(f ; t)
d
err

◆
(4)

h(f ; t) =
1

hLiRe

(f ; t)d
err

(5)

where R
e

(f ; t) =
1 +A(f ; t)D(f)C(f ; t)

C(f ; t)
(6)

=
1 +G(f ; t)

C(f ; t)
(7)

Here, C(f ; t) is the transfer function of the arm cav-223

ity or the sensing function, D(f) is a digital filter, and224

A(f ; t) is the actuation function that corrects mirror225

position. d
ctrl

is the signal sent to the actuators de-226

scribing how to move the test masses to recover reso-227

nance, �L
ctrl

is the length perturbation the actuation228

function applies to the test masses, and �L
res

is any229

residual length change the actuation function happens to230

not correct. We take the various transfer functions into231
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Fig. 5.— A block diagram of the DARM feedback control servo
from [20]. This schematic shows that aLIGO’s output is dependent
on the performance of the feedback loop. Each component of the
feedback loop is described by a transfer function and the uncer-
tainty on the overall loop transfer function yields the CEs on the
GW strain detection. The transfer functions of all of the compo-
nents in the feedback loop are necessary to reconstruct the GW
signal. The subsystems are described more thoroughly in [15, 20].

G(f ; t) = C(f ; t)D(f)A(f ; t), the DARM open loop gain.232

We further rearrange this equation into a response func-233

tion, R
e

(f ; t), which lets us estimate uncertainty more234

easily. D(f) is known precisely, so the uncertainty in our235

GW strain, �
h

(f ; t), is dominated by the uncertainty in236

R
e

(f ; t): �
R

(f ; t). Equation 7 is derived and its com-237

ponents described more thoroughly in [20, 15]. More238

complex calibration loop treatments are given in [1, 13].239

In equation 5, R
e

(f ; t) gives the theoretical or ex-240

act response function, but the measured length func-241

tion, R
m

(f ; t), includes CEs from the sensing C(f ; t)242

and actuation A(f ; t) functions as well as the slow, time-243

dependent drift in these functions. Because detectors244

are noisy, drift with time, and can glitch, R
e

(f ; t) and245

R
m

(f ; t) can di↵er greatly. This leads to systematic er-246

rors in GW strain reconstruction.247

The frequency dependent and time dependent param-248

eters of R(f ; t) are what impact the response function249

uncertainty, �
R

(f ; t). We examine these parameters for250

C(f ; t) and A(f ; t).251

V.I. Sensing Function, C(f ; t)252

The sensing function “senses” GW strain. It represents253

the interferometer optical plant and is approximated by254

a coupled-cavity single pole function [9]:255

C(f ; t) =

C

(t)C
R

(f)

1 + if/f
CC

(t)
e�2⇡if⌧C (8)


c

(t) : optical gain

fcc(t) : coupled cavity pole

C
R

(f) : “sensing residual” after cavity

pole is divided out

⌧
C

: sensing function time delay

The optical gain 
c

(t) depends on the laser power in256

the optical arm cavities and has a time dependent scalar257

gain factor. Equation 7 indicates R
e

(f ; t) ⇡ 1/C(f ; t)258

when |G| << 1. Changes in the optical gain produce the259

largest systematic errors at frequencies above the unity260

gain frequency (40 Hz and 56 Hz for H1 and L1, respec-261

tively [15]). The coupled cavity pole frequency fcc(t)262

depends on the reflectivities of the interferometer op-263

tics and has a time dependency due to cavity length264

and alignment changes [14].This changes the shape of the265

sensing function at frequencies close to the nominal cou-266

pled cavity pole frequencies. At high frequencies, 
c

(t)267

and fcc(t) contribute systematic errors in the magnitude268

of �L
ext

[17].269

V.II. Actuation Function A(f ; t)270

The actuation function describes the physical actua-271

tors that spatially adjust the test masses hung in quadra-272

ture (see Figure 3). The test mass stage are labeled273

as follows: Top, Upper Intermediate, Penultimate, and274

Test. All except for the top stage are actuated upon275

and so contribute a term to the actuation function. The276

Upper-Intermediate and Penultimate masses have Opti-277

cal Sensor and Electromagnetic (OSEM) actuators while278

the test mass, the mass that the laser light hits, has a279

ElectroStatic Drive (ESD) actuator. The ESD allows for280

finer spatial adjustments but can build up charge from281

residual gas via ion vacuum pumps in aLIGO. Conse-282

quently, its strength changes with time.283

A(f ; t) = [
T

(t)A
T

(f) + 
P

(t)A
P

(f) + 
P

(t)A
U

(f)] e�2⇡if⌧A

(9)


T

(t) : ESD actuation strength


P

(t) : OSEM actuation strength

A
T

(f) : Test mass actuation function

A
P

(f) : Penultimate mass actuation function

A
U

(f) : Upper-Intermediate mass actuation function

⌧
A

: computational time delay in

digital-to-analog conversion

Equation 7 indicates R
e

(f ; t) ⇡ A(f ; t)D(f) when284

|G| >> 1. A
T

(f) is the dominate term in A(f ; t) for285

frequencies greater than 20 Hz; the largest systematic286

errors contained in A(f ; t) (±15%) are due to variations287

in the actuation strength of the ESD from 20 � 50 Hz288

[17].289

V.III. Full Parametrization of the Response Function290

and Real-Time Calibration Measures291

With our parameters from C(f ; t) and A(f ; t), we can
rewrite our actuation function beginning with equation
7 and dropping the time delays as:

R
e

(f ; t) =
1 +A(f ; t)D(f)C(f ; t)

C(f ; t)
(10)

R
e

(f ; t) =
1

C(f ; t)
+D(f)A(f ; t) (11)

R
e

(f ; t) =

✓

C

(t)C
R

(f)

1 + if/f
CC

(t)

◆
+

D(f) (
T

(t)A
T

(f) + 
P

(t)A
P

(f)
P

(t)A
U

(f)) (12)

The time dependent parameters292

(
T

(t),
P

(t),
C

(t),f
CC

(t)) are monitored for varia-293

tion using intentional injections at a single frequency294
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(called calibration lines) into the DARM spectrum295

throughout an observation run (see Table 2). The296

calibration lines reveal any short-term gain fluctuations297

in optical plant or actuation strengths.298

TABLE 2
Calibration line table recreated from [17]. Lines 1-3 are
used to estimate 

T

and 

P

and line 4 for 

C

and f

c

for
the LIGO Hanford (H1) and LIGO Livingston (L1)

detectors.

299

# Signal Freq. (Hz) Line Purpose
H1. L1

1 x

T

35.9 35.3 ESD actuation strength
2 �L

pcal

36.7 34.7 DARM actuation
3 x

ctrl

37.3 33.7 Penultimate & Upper-
Intermediate actuation strengths

4 �L

pcal

331.9 331.3 Optical gain and coupled cavity
pole frequency

300

301

The frequency dependent parameters in our response302

function (A
U

(f), A
P

(f), A
T

(f), C
R

(f)) are measured303

between observation runs using swept sine calibration; a304

sine wave displacement signal is applied to a test mass305

while the interferometer is locked. Then, the frequency306

is slowly swept over the GW detection band and the er-307

ror signal is measured as a function of the displacement.308

This yields the closed loop transfer function equation.309

During observation runs, the frequency dependent pa-310

rameters are measured a few times per run using wide-311

band psueudo-random signals with amplitudes below the312

noise level. The disturbances created from this are small313

and distributed over the whole gravitational wave band.314

While having the advantage of not impacting any GW315

signal observations, below noise-level calibration signals316

have the disadvantage of needing a longer integration317

time to extract. This results in obtaining only a few318

frequency calibration signals per observation run. It is319

assumed that the frequency dependence of the control320

loop will not vary in between these calibration signal ex-321

tractions [13].322

Because this does not always hold true, the interpreted323

GW strain will be di↵erent from the true GW strain in324

both phase and amplitude. As discussed in Section IV,325

this a↵ects both the precision measurement of astrophys-326

ical parameters like masses, sky location, distance, incli-327

nation, and orientation and also the measurement of uni-328

versal parameters like those that describe variations form329

GR. To decrease the di↵erence between the measured330

length function and the exact length function, we seek331

to better characterize aLIGO’s CEs through Bayesian332

parameter estimation.333

VI. BAYESIAN PARAMETER ESTIMATION WITH334

LALINFERENCE MCMC335

Using the parameter estimation pipeline336

LALInference [18], we compare a parametrized337

GW waveform model to the detected strain signal.338

Figure 4 shows the model used for GW150914. This339

matched filtering technique using template banks,340

further described in [6], is an accurate and time sensitive341

method to identify potential gravitational waves.342

Using LALInference’s results, we can construct prob-343

ability density functions (PDFs) for each of the parame-344

ters in the GW detection. To be explicit, we begin with345

Bayes’ theorem; the probability that a parameter, ✓, is346

the correct value given some data, x, is equal to the prob-347

ability of getting the data given the parameter times the348

probability that the parameter is the correct value, and349

divided by the evidence of the data:350

P (✓|x) = P (x|✓)⇥ P (✓)

P (x)
(13)

Here, P (✓|x) is the posterior probability, P (x|✓) is the351

likelihood, P (✓) the prior, and P (x) the evidence.352

We can then express the probability that the strain353

data x(f) came from an astrophysical system with pa-354

rameter ✓ with the log-likelihood, lnP (x|✓):355

lnP (x|✓) = �1/2

Z 1

0

|h(f, ✓)� x(f)|2

S
nn

(f)
(14)

where x(f) is the strain data from the detector, h(f, ✓)356

is the GR prediction for the strain with parameter ✓,357

and S
nn

(f) is the power spectral density of the detector’s358

strain noise.359

We can update this probability as more data becomes
available. We can “stack” GW observations like so:

P (✓|x, y) = P (x, y|✓)⇥ P (✓)

P (x, y)

=
P (y|✓, x)⇥ P (✓|x)

P (x, y)
Substitute in Eqn. 13

=
P (y|✓)⇥ P (x|✓)⇥ P (✓)

P (x)P (y)
(15)

Because GWs are uncorrelated the

probability of y does not depend on x

where P (✓|x, y) is the posterior probability that ✓ is the360

correct value given that x, our data or a GW detection,361

and y, new data or another GW detection, exist. The362

normalization constants of these models are typically ig-363

nored in favor of simply comparing two competing mod-364

els by taking the ratio (called the odds ratio) of posterior365

probabilities to the evidence/potential GW signal:366

O
i,j

=
P (✓

i

|x)
P (✓

j

|x)Bij

(16)

where ✓
i

is some parameter model and is compared to367

another parameter model, ✓
j

. The Bayes factor or evi-368

dence ratio, B
ij

, is the ratio of likelihoods between the369

models. It is often used as a statistic to describe confi-370

dence in the correctness of a model or to rank competing371

hypotheses given the observed data. From equation 15372

we see that as we amass new GW detections we update373

the probability by multiplying the detections together.374

For an arbitrary number of detections, the probability of375

the parameter is then given by:376

P (✓|x
i

) /
"
Y

i

P (x
i

|✓)
#
⇥ P (✓) (17)

Stacking GW strain signals in this way can constrain377

parameter estimation better than a single detection can.378

However, Bayesian inference tends to be computationally379

expensive, due to a large number of parameters (15 for380
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the most simple compact binary merger models, exclud-381

ing instrumental and calibration parameters, see Table382

1), complex multi-modal likelihood functions, and the383

computationally costly process of generating the model384

waveforms [18]. As a result, stochastic sampling tech-385

niques, like Markov Chain Monte Carlo (MCMC), Nested386

Sampling, and MultiNest/BAMBI, have been explored387

and developed for Bayesian inference for GW data and388

have been packaged into LALInference to speed up the389

process. This work specifically uses the MCMC routine390

LALInference mcmc.391

In short, LALInference mcmc subtracts the input GW392

model from the potential GW signal strain and com-393

pares the result with Gaussian white noise [18]. It uses a394

MCMC to step through the 15+ parameter space, using395

Bayesian inference to calculate the likelihood of the sub-396

tracted signal to be Gaussian white noise as a function397

of the step’s parameter values. LALInference mcmc then398

takes the most probable template and outputs the PDFs399

of those parameters. With the PDFs we can compute400

parameter expectations and confidence intervals.401

VII. IMPACT OF CALIBRATION ERROR MODELS ON402

BAYESIAN PARAMETER ESTIMATION403

CEs will introduce bias in the posterior distributions404

of the measured parameters. In this section we discuss405

the impact that a constant, spline-fitted, or a frequency406

dependent calibration error model have on our parameter407

estimations.408

Previous studies [19] have designated an “e↵ect size”409

statistic to measure the shift in the median of a parame-410

ter due to calibration errors and weight it by the standard411

deviation:412

�
✓

⌘ ✓̂
cal

� ✓̂
nocal

�
✓,nocal

(18)

VII.I. Constant CE Model413

The constant CE Model is the most basic model. It414

allows for two additional parameters that specify a con-415

stant shift in amplitude and phase.416

VII.II. Spline Fit CE Model417

Spline interpolation is the current CE Model for418

aLIGO.419

VII.III. Frequency Dependent CE Model420

A frequency dependent CE model is more realistic and421

predicted to increase precision of parameter estimation.422

VIII. SOFTWARE INJECTIONS423

Though up to 100’s of observations per year are ex-424

pected by the time LIGO operates at design sensitivity425

[3], only two GW detections have been published as of426

the time of this paper. For now, we use simulated sig-427

nals injected by software instead of real GW signals. We428

construct these injections to share a common non-GR pa-429

rameter for us to constrain in hopes that the technique430

can be used on real data when more GW detections are431

available. Additionally, we can construct confidence in-432

tervals from these PDFs as a function of the number of433

injections/detections. This will allow us to estimate how434

many injections/detections are required to constrain the435

non-GR parameter in future studies.436

GW waveform models are based o↵ of an analytical437

inspiral-merger-ringdown (IMR) model (see Figure 4)438

and usually calibrated against waveforms from direct nu-439

merical integration of the Einstein equations [4]. We use440

injections generated from lalapps inspinj, part of the441

LaLApps Suite [11].442

IX. TIGER PIPELINE443

TIGER (Test Infrastructure for GEneral Relativity)444

is a data analysis pipeline for model-independent test-445

ing the strong-field dynamics of general relativity with446

GW signals [5]. It relies on Bayesian model selection447

to combine information from multiple observations. It448

then compares the stacked data evidence between two449

hypotheses: a GW waveform model consistent with GR,450

H
GR

, and a model with parametrized deformations of the451

GW waveform model,H
modGR

, as given by additional pa-452

rameters. TIGER uses an odds ratio to compare these453

models:454

OmodGR

GR

⌘ P (H
modGR

|d, I)
P (H

GR

|d, I) (19)

where d is the data and I is our prior.455

This method is considered model independent because456

any/all of the additional parameters are allowed to vary457

from zero (where they agree with GR) such that many458

di↵erent waveforms could be well fit. Each possible wave-459

form is considered a sub-hypothesis and the Bayes factors460

for all of the sub-hypotheses can be merged into a sin-461

gle odds ratio with which to compare the GR consistent462

model.463

Detector noise can sometimes mimic GR violations. To464

allay this, the odds ratio should be compared with a noisy465

background distribution; injecting many simulated GW466

signals with di↵erent astrophysical parameters into data467

surrounding the GW signal of interest can accomplish468

this [5]. The odds ratio can then be calculated for many469

GR consistent injections/noisy background sets. Then,470

a distribution of the odds ratio for GR consistent GWs471

can be calculated with an accompanying p-value. From472

this a threshold can be set for non-GR conforming GW473

model odds ratios to overcome.474

In this work, we focus on a single-parameter analysis475

in the merger-ringdown regime with a noisy background476

distribution. We fix all other parameters to be consistent477

with GR.478

X. RESULTS479

In this section, we plan to discuss model selection, pa-480

rameter recovery, and error propagation results. We will481

then compare the calibration error models and present482

measurements of their e↵ectiveness in parameter recov-483

ery.484

XI. CONCLUSION485
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