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1. First Progress Report Questions

Write in some detail the motivation for your project. It should include

background and an overview of the ongoing work in the laboratory. You should

include references.

See Section 2 for motivation and background (it is a draft of the introduction for my final

paper). Ongoing work includes reading TIGER and testing-GR papers as recommended by

Alan.

Discuss the problem you are working on and explain how it fits into the

ongoing work. Explain your approach and outline the methods you expect to

use.

I am working on running parameter estimation through the LALInferencemcmc pipeline for

various calibration parameters. This is the heart of the project as it is how I will recover

my parameter estimations after forming software signal injections. My approach includes

using online documentation and my mentors’ recommendations on running instructions and

parameter values.

Discuss the progress you have made on your project, your goals for the next

month, and the methods or approach you will use to reach your research goals.

In the last two weeks, I have worked on/attended/been introduced to:

• introductory lecture on gravitational wave astronomy

• parameters for compact binary coalescence/Kerr parameters, black hole perturbation

theory

• intro lecture on linear time invariant systems control, convolution theory

• lectures on LIGO instrumentation
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• lecture on ipython notebook, binder, signal processing tutorials; masses in units of

seconds

• read relevant LIGO instrumentation papers

• introduction to the parameter estimation pipeline LALInference with Alan & Kent

• ran lalinfmcmc, varying only ne↵; ne↵5000 through 500 (discovered a hard cut of at

ne↵2000)

• created condor submit files and a dag file by hand

• python plots of the results

My ipython notebook is uploaded on my GitHub: https://github.com/mmcintosh27/

LIGO and Figure 1 shows the one of plots I made of lalinfmcmc at various ne↵ to determine

if the parameter estimates varied at a function of ne↵, but it doesn’t look like they do.

Fig. 1.— More information about the runs are on https://ldas-jobs.ligo.caltech.edu/

~melissa.mcintosh/neff1000/posplots.html and urls of the like.

My goals for next month include finishing my literature review, selecting my calibration

focus, understanding the calibration uncertainty to a greater extent, learning how to

modify current calibration models, developing methods to propagate calibration uncertainty
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for astrophysical and precision-GR parameters, quantitatively evaluating systematic and

statistical errors on these parameters, and estimating the contributions from the calibration

uncertainties in impacting these errors.

What are the challenges and problems you have met so far and what

challenges and problems do you anticipate?

Running lalinfmcmc seems to be done with an “ini” file, but system updates has caused the

file to not be functional for the past two weeks. In its place I have been using the command

line to run lalinfmcmc and creating sub files for condor and dag files by hand. This is not

as straightforward but also has the benefit of a lower-level understanding of the function of

the ini file. In the upcoming weeks I anticipate the di�culty of “stacking” injected signals

and understanding ways of testing GR.

What resources will you require?

A patient mentor and perhaps some tech support.

Questions I have

Am I injecting signals into simulated or real data or both? When I’m looking at the

ringdown parameter, am I also looking at higher order mode oscillations or is that entirely

di↵erent? Am I creating injections or using them from a library? I’ve seen spinTaylor,

TaylorF2, TaylorT4 and e↵ective-one-body mentioned.

In [5], “ Similarly, model selection is not much a↵ected by calibration errors. Fig.

4 shows the e↵ect of calibration errors, modeled exactly as in [65], on the log odds ratio

background distribution. As expected, the e↵ect is minor ... and calibration errors will not

a↵ect the performance of TIGER.”

So why am I focusing on calibration errors and using TIGER?

The rest of this document is a start on my final paper.
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2. Introduction

In 1915, Einstein published his General Theory of Relativity (GR). This theory and

his following papers predicted the existence of gravitational waves (GWs). In 1993, a Nobel

Prize went to Hulse and Taylor [9] who discovered pulsar system losing energy at the

same rate predicted by GW emission, and thus implying the existence of GWs. Then in

2015, direct detection of GW150914, which was identified as a result of a binary black hole

merger, occurred at the Advanced Laser Interferometer Gravitational Wave Observatory

(aLIGO) detector network [2]. With this detection, studying GW observations became

feasible.

GWs allow us to observe strong-field dynamics of space-time and astrophysical

phenomena inaccessible by electromagnetic radiation. With the direct detection of GWs,

experiments to test GR in large velocity, highly dynamical, and strong-field gravity regimes

can be conducted. Because GWs cause extremely small perturbations in aLIGO (on the

order of 4⇥ 10�20m [2]) the sensors and signal analysis needs to be precise. Characterizing

and reducing uncertainties in aLIGO data allows us to reclaim as much physical information

from the GW signal (measured in ’strain’) as possible, increasing the detail of any GW

analysis.

The two sources of uncertainty in aLIGO are statistical and systematic uncertainty.

Though statistical uncertainty, a zero-mean Gaussian distribution strain measurement

variation, is unavoidable, it can be reduced by taking additional strain measurements.

Systematic uncertainty is relatively avoidable and cannot be reduced by additional

measurements. Systematic uncertainty stems from incorrect characterization of the detector

and causes calibration errors. Careful calibration has to be maintained to accurately

associate the frequency response of the detector with the motion of aLIGO’s optics and

consequently reduce systematic error. These calibration errors are the focus of this project.
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Calibration errors are errors that pertain to the conversion of instrumental readout to

GW strain and are subsumed in the di↵erential arm length transfer function (DARM) of

aLIGO. Previous works that have forayed into calibration error analysis include [13, 15].

Current calibration errors for aLIGO are estimated as an overall constant in wave amplitude

and phase, but a new, frequency dependent estimation method also is discussed here.

This work has three goals:

1. Describe the calibration methods used for aLIGO and their uncertainties

2. Estimate the e↵ects of this calibration uncertainty on astrophysical parameters such

as the source distance, sky location, and the progenitor masses and spins

3. Estimate the e↵ects of this calibration uncertainty on precision tests of GR

This work uses a Bayesian approach to quantify potential calibration error e↵ects on

signal injections which mimic both GR and non-GR conforming GWs. It is possible that

the calibration errors will blur our ability to distinguish between the two; we also investigate

if a new, frequency dependent method of characterizing calibration errors will allow us to

distinguish the GR and non-GR conforming signal injections. Though the few GW detected

so far have had no statistically significant disagreement with GR, the LIGO detectors

are not yet at their design sensitivities, louder GW sources may yet be detected, and the

potential to combine or “stack” GW observations to increase sensitivity all encourage this

work [4].

The layout of this paper is as follows. First, we describe the di↵erential arm length

(DARM) closed feedback loop transfer function, which contains the GW wave signals

and calibration errors for aLIGO. Next we describe how we estimate astrophysical and

calibration parameters using the parameter estimation pipeline LALInference [14]. Then
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we relate previous research on the impact of calibration errors on this parameter estimation

method. Afterwards, we describe the software signal injections used to mimic GR and

non-GR conforming GW signals and their use in TIGER [5], a data analysis pipeline for

testing the strong-field dynamics of GR with GW signals. We then attempt to recover the

parameters used to generate the software signal injections using LALInference with both

a constant calibration error model and also a frequency dependent calibration error model.

Finally, we discuss the e↵ectiveness the two calibration error models have on recovering

astrophysical parameters and precision GR test parameters (in particular, we focus on a

single GW ringdown parameter).

3. DARM Closed Feedback Loop Transfer Function

aLIGO is a complex and cutting edge instrument; it consists of a modified Michelson

interferometer with Fabry-Perot arms that uses power-recycling mirrors and resonant

sideband extraction that allow it to measure minuscule phase propagation di↵erences via

the Pound-Drever-Hall technique [8, 10, 11]. However, we follow [15] in this analysis and

reduce the entire instrument to a sensor with a single degree of freedom: di↵erential arm

length (DARM) perturbations. These di↵erentials contain GW, error, and other signals and

are measured continuously in a closed feedback loop. The purpose of this feedback loop (see

the reduced block schematic in Figure 2) is to recenter the mirrors used in aLIGO after the

arms have been perturbed so that constructive interference of the laser is maintained. This

allows the instrument to measure the next arm length di↵erential as quickly as possible.

Each component of the feedback loop is described by a transfer function and the

uncertainty on the overall loop transfer function yields the calibration error on the GW

strain detection. The length response function/overall loop transfer function of the closed
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Fig. 2.— Figure from [15]. This reduced box schematic shows that the interferometer output

is dependent on the performance of the feedback loop such that the transfer functions of all

of the components in the feedback loop are necessary to reconstruct the GW signal. The

subsystems are described more thoroughly in [15, 13].
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loop feedback system (ignoring slow time dependency) is given by

R(f) =
1 +G(f)

C(f)
(1)

where G(f) = A(f)C(f)D(f), or the open loop gain of the system. Here, C(f) is the

transfer function of the arm cavity or the sensing function, D(f) is a digital filter, and

A(f) is the actuation function that corrects mirror position. This equation is derived

and its components described more thoroughly in [15, 13]. More complex calibration loop

treatments are given in [1, 12]

Knowing the length response function, the GW strain can be calculated by

d(f) =
�L

ext

L
=

R(f)e(f)

L
(2)

where e(f) is the error signal/detector output given by the DARM feedback loop, �L
ext

the external length perturbation caused by the GW, and L the length of the arm of the

interferometer in the absence of perturbations.

Equation 1 gives the theoretical or exact length function, but the measured length

function includes calibration errors. Because the measured length function di↵ers from the

exact one, the interpreted strain will be di↵erent from the true strain in both phase and

amplitude. These calibration errors a↵ect the signal-to-noise ratio (SNR) of potential GW

signals found in detection pipelines, though only to second order terms [7]. This a↵ects both

the precision measurement of astrophysical parameters like masses, sky location, distance,

inclination, and orientation and also the measurement of universal parameters like those

that describe variations form GR. To decrease the di↵erence between the measured length

function and the exact length function, we seek to better characterize aLIGO’s calibration

errors through Bayesian parameter estimation.
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4. Bayesian Parameter Estimation with LALInference mcmc

Using the parameter estimation pipeline LALInference [14] in a similar way to [DCC:

P1500105] we compare a parametrized GW waveform model to the detected strain signal.

Figure 3 shows the model used for GW150914. This matched filtering technique using

template banks, further described in [6], is an accurate and time sensitive method to

identify potential gravitational waves.

Using LALInference’s results, we can construct probability density functions (PDFs)

for each of the parameters in the GW detection. To be explicit, we reiterate part of Bayes’

theorem; the probability that a parameter, ✓, is the correct value given some data, x, is

proportional to the probability of getting the data given the parameter times the probability

that the parameter is the correct value:

P (✓|x) / P (x|✓)⇥ P (✓) (3)

We can update this probability as more data becomes available. We can “stack” GW

observations like so:

P (✓|x, y) / P (x, y|✓)⇥ P (✓)

/ P (y|✓, x)⇥ P (✓|x) We can now substitute in Eqn. 3

/ P (y|✓)⇥ P (x|✓)⇥ P (✓) Because GWs are uncorrelated (4)

the probability of y does not depend on x so we drop x

where P (✓|x, y) is the posterior probability that ✓ is the correct value given that x,

our data or a GW detection, and y, new data or another GW detection, exist. The

normalization constant of these models are typically ignored in favor of simply comparing

two competing models by taking the ratio (called the odd’s ratio) of posterior probabilities

to the evidence/potential GW signal:
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Fig. 3.— Figure from [2]. According to GR, two objects in orbit will slowly spiral inwards

due to a loss of energy and angular momentum via GWs. The frequency and amplitude of

the emitted GWs increases as the orbital distance between the objects shrink. When the

objects finally merge, if they are BHs, they radiate GWs as a superposition of quasinormal

ringdown modes, with one mode eventually dominating with a exponentially damped, con-

stant frequency wave [4]. We observe this as a lower frequency inspiral phase, a post-merger

peak at some fixed frequency, and then a higher frequency ringdown. In this work we inves-

tigate the di↵erences due to non-GR conformity as described in a parameter pertaining to

the ringdown of the GW.
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O
i,j

=
P (✓

i

|x)
P (✓

j

|x)Bij

(5)

where ✓
i

is some parameter model and is compared to another parameter model, ✓
j

. The

Bayes factor or evidence ratio, B
ij

, is the ratio of likelihoods between the models. It is often

used as a statistic describing how confident we are that the model is correct or to rank

competing hypotheses given the observed data. From equation 4 we see that as we amass

new GW detections we update the probability by multiplying the detections together. For

an arbitrary number of detections, the probability of the parameter is then given by:

P (✓|x
i

) /
"
Y

i

P (x
i

|✓)
#
⇥ P (✓) (6)

Stacking GW strain signals in this way can constrain parameter estimation better

than a single detection can. However, Bayesian inference tends to be computationally

expensive, due to a large number of parameters (15 for the most simple compact binary

merger models, excluding instrumental and calibration parameters), complex multi-modal

likelihood functions, and the computationally costly process of generating the model

waveforms [14]. As a result, stochastic sampling techniques, like Markov Chain Monte Carlo

(MCMC), Nested Sampling, and MultiNest/BAMBI, have been explored and developed for

Bayesian inference for GW data and have been packaged into LALInference to speed up

the process. This work specifically uses the MCMC routine LALInference mcmc.

In short, LALInference mcmc subtracts the input GW model from the potential GW

signal strain and compares the result with Gaussian white noise [14]. It uses a MCMC to

step through the 15+ parameter space, using Bayesian inference to calculate the likelihood

of the subtracted signal to be Gaussian white noise as a function of the step’s parameter

values. LALInference mcmc then takes the most probable template and outputs the

PDFs of those parameters. With the PDFs we can compute parameter expectations and
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confidence intervals.

5. Potential a↵ect of Calibration Errors on Bayesian Parameter Estimation

6. Software Injections

Though up to 100’s of observations per year are expected by the time LIGO operates

at design sensitivity [3], only two GW detections have been published as of the time of

this paper. For now, we use simulated signals injected by software instead of real GW

signals. We construct these injections to share a common non-GR parameter for us to

constrain in hopes that the technique can be used on real data when more GW detections

are available. Additionally, we can construct confidence intervals from these PDFs as a

function of the number of injections/detections. This will allow us to estimate how many

injections/detections are required to constrain the non-GR parameter in future studies.

GW waveform models are based o↵ of an analytical inspiral-merger-ringdown (IMR)

model and usually calibrated against waveforms from direct numermical integration of the

Einstein equations [4]

[how injections/waveforms are made/what libraries we take them from]

TIGER (Test Infrastructure for GEneral Relativity) [5] is a data analysis pipeline for

model-independent testing the strong-field dynamics of general relativity with GW signals.

It relies on Bayesian model selection to combine information from multiple observations.

It then compares the stacked data to both a GW waveform model consistent with GR

and a model with parametrized deformations of the GW waveform model, as given by

additional parameters. This method is considered model independent because any/all of

the additional parameters are allowed to vary from zero (where they agree with GR) such

that many di↵erent waveforms could be well fit. Each possible waveform is considered a



– 14 –

sub-hypothesis and the Bayes factors for all of the sub-hypotheses can be merged into a

single odds ratio with which to compare the GR consistent model.

Detector noise can sometimes mimic GR violations. To allay this, the odds ratio should

be compared with a noisy background distribution; injecting many simulated GW signals

with di↵erent astrophysical parameters into data surrounding the GW signal of interest

can accomplish this [5]. The odds ratio can then be calculated for many GR consistent

injections/noisy background sets. Then, a distribution of the odds ratio for GR consistent

GWs can be calculated with an accompanying p-value. From this a threshold can be set for

non-GR conforming GW model odds ratios to overcome.

In this work, we focus on a single-parameter analysis in the merger-ringdown regime.

We fix all other parameters to be consistent with GR.

7. Parameter Recovery and Error Propagation

8. Comparison of Calibration Error Models and e↵ectiveness of Parameter

Recovery

9. Conclusion

Next steps could include expanding our single-parameter analysis to a multi-parameter

analysis

The first GW has only recently been detected; the universe as illustrated by GWs

is an emerging perspective in astronomy. Observing things in the universe for the first

time is exciting and impactful, but verification that the detections are accurate is vital.

Publishing uncertain/inaccurate detections can confuse and delay our understanding of the

universe and it can happen in the excitement of new and big discoveries. Consequently,
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good calibrations of instrumentation is essential if we are to be confident about collected

data and use it to understand how our universe works.
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