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Abstract

On September 14th, 2015, the Advanced LIGO detected the first gravi-
tational wave [2]. The detected wave had a very large Signal to Noise Ratio
value, which made it stand out from the rest of the candidate events. This
paper investigates an alternative detection statistic, involving the ‘Bayes
Factor.” This detection statistic might prove to be more robust than SNR,
as it may be able better to discern between strains due to gravitational
waves, and strains due to noise. This study of the new detection statistic
is focused on binary black hole systems.

1 Introduction

The completion of the two Advanced Laser Interferometer Gravitational-Wave
Observatories has led to the discovery of a gravitational-wave signal [2]. This
paper deals with a new detection statistic, involving Bayesian statistics, to rank
the different candidate events (the strains in the data sets that could poten-
tially be due to gravitational waves). The candidate events we focus on are
from binary black hole systems as they are believed to be fairly common in the
Universe [1]. Before we study this new method, we will discuss how data is
currently being recorded and analysed.

Each of the advanced LIGO observatories uses a modified Michaelson Interfer-
ometer that measures the difference in the length of the orthogonal arms of the
observatory to detect the presence of a gravitational wave [2]. On passing, a

*smith r@ligo.caltech.edu
fjkanner@caltech.edu



gravitational wave induces a difference in the length of the arms which is mea-
sured as a phase shift in the circulating laser light..

To determine if data recorded by LIGO stores gravitational wave information,
the data is processed with two search techniques. One search looks for generic
transient waveforms (unmodeled or unexpected waveforms) in data [3]. The
second is a match filtered search that compares the data with templates of
waveforms generated by general relativity [3].

Both the search processes are made challenging due to the background noise
present in the data. This background noise can result from defects in a mirror,
the uncertainty in the number of photons traveling in a the laser beam (shot
noise), seismic activity, or even thermal noise generated by the Brownian motion
of electrons inside circuits [4]. To separate strains caused by background noise
from those caused by gravitational waves, the data from one LIGO observatory
is compared with another LIGO observatory’s data [2]. To compare the data
sets, one of the them can be time-shifted so that it matches the data in the other
detector over the light-travel time between the detectors. That is, one data set
can be time-shifted so that both of the data sets lie along the same interval of
time.

After making the necessary time shift, events present in one data set but not
the other become apparent. This process cuts a majority of the strains that
may have been present due to noise [2]. We attempt to discount any remaining
noise-strains by implementing a detection statistic to rank the strains according
to the likelihood that the strain resulted from a gravitational wave.

The detection statistic currently being used to rank strains according to the
maximum likelihood of it being due to a gravitational wave is the signal-to-
noise ratio (SNR) detection technique [3]. This method compares the power
of the strain signal to the power of the remaining noise at a given point [4].
Although the power of the noise is difficult to calculate, we know that this
ranking process can make some gravitational wave strains stand out, as seen
from the Fig 1. However, we believe that this method lacks the sensitivity
necessary to detect some gravitational waves that do not have SNR values as
high as those of GW150914. Hence we would like to investigate an alternate
detection statistic, specifically one that compares the relative probability that
a data set contains a strain due to a gravitational wave to the probability that
the data just contains noise. This ratio is known as the Bayes Factor.

Additionally, the templates that are used in the matched filtered searches ac-
count for only a small subset of the vast possibility of gravitational wave signals.
This might result with some gravitational waves signals that do not have tem-
plates to be left undetected . In contrast, the LALInference program, which is
what will be used to implement the new detection statistic, uses templates that
can describe a far bigger set of signals. Hence, the Bayes factor might prove to
be more sensitive than SNR, as we will have more information about the signal.



Figure 1: Search results of the generic transit search in which the first grav-
itational wave signal, marked GW150914, was detected. The wave strain of
GW150914 stands out as the strongest strain in the entire search. SNR was
used in this search to calculate the background noise and the events. Figure
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2 Objectives

To compute the Bayes factor between two hypotheses, we need to first define the
models we are comparing. The models are descriptions of the data d(t), which
contains either only noise, or noise along with a gravitational wave signal, pa-
rameterized by a certain vector g. The parameter vector g contains information
on several quantities describing the binary black hole system such as the masses
of the black holes, their spin vectors, and the distance of the black holes from
Earth [5]. The models we will use can be written as:

e M, the noise model, which corresponds to the hypothesis that d(t)
contains only noise, Hyyuy : d(t) = n(t).

e Haw: the gravitational wave signal model, which corresponds to the
hypothesis that the data contains noise, and a gravitational wave sig-
nal parameterised by 6. Hence the model is defined by Hew : d(t) =

h(,t) + n(t).

We can compare these two models by calculating the relative probabilities in
the form of the posterior odds ratio Ogw, nuu between the two of them [5],
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where Baw,nuu is the ‘Bayes’ Factor,” which is equal to [5]:



P(d|Hnull)
It should be noted that the relative probability, Eq 1, and the Bayes factor,

Eq 2, contain no reference to the signal parameters 6. Hence, the Bayes factor
Baw,nun can be calculated from our hypothesis, for any values for the parame-
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ters 6.

To be able to account for the set of parameters g for a gravitational wave, the
likelihood of the model Hgy needs to be marginalised over all the parameters,
weighted by their prior probability distribution, giving the marginal likelihood
or evidence, given by P(d|Haw) [5]-

To calculate P(d|Hgyy), first we need to determine the posterior probability den-

sity function (PDF). For gravitational wave analysis, the PDF of the parameters

6 is [4]:

p(0Haw) p(df, Haw
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or in other terms,

Prior x Likelihood

FEvidence

In other words, in Eq 3, we have each model Hgw , to have a vector of param-
eters #, with which we can calculate a ‘Prior’ distribution of P(6|H gy ). This
states what values the model H gy might be expected to take from the data set
d. We also have p(d|f, ), which is the ‘likelihood’ of the data, given that the
model Haw is true.

Posterior Probability Density Function =

To finally solve for p(d|/Haw ), we rearrange Eq 3 and integrate over g, to get

p(dHew) = /@ (0 Hew) p(d)f, Hew )dd, (4)

since the integral of the PDF, by definition of a probability density, is

/ p(0)d, Haw) df = 1.
o

We can now use the value for p(d|/Hgw) from Eq 4, and substitute it into our
equation for the Bayes Factor, Eq 2. Using this Bayes’ Factor, may be able to
better highlight the strains due to gravitational waves in our data.

We will demonstrate the use of the Bayes factor by generating a figure, like
Fig 1. However, instead of using SNR to calculate the background noise and
rank the cadidate events, the Bayes factor will be used.



3 Approach

The main objective of this project will be to asses the sensitivity of the Bayes’
Factor to rank gravitational waves that might have been missed using SNR as
the detection-statistic. This will be done with a procedure that we will write,
with the help of the LALInference program.

We will begin by establishing the search background of the noise, with the help
of the Bayes factor. This search background is made after time-shifting the data,
as discussed in Sectionl. We will then inject gravitational wave signal into data
sets, and use the new detection statistic to study if it can detect the waves. If
the Bayes Factor is unable to detect the gravity wave signal, we will study the
thresholds at which the the gravity wave signals can finally be detected with
the Bayes factor.

We will then try to study past data and see if the Bayes Factor detection statistic
can help extract more gravitational waves signals from the noise in the various
data sets. We will also like to study if it will be able to detect gravity waves
from quieter events, that would appear on the background of SNR, as seen in
Fig 1.

4 Project Schedule

WEEK 1: Restructure the problem statement, and understand the past pro-
graming done for Bayesian statistics. Develop an approach to write the program
to create the detection statistic that will rank the events using the Bayes factor
defined in Eq 2.

WEEK 2-3: Analyse noise and injected gravity wave signals to determine sen-
sitivity of the Bayes Factor.

WEEK 4: Study the results in detail, and restructure the computer program.
Test the thresholds and compare the Bayes Factor detection statistic to the SNR,
detection statistic.

WEEK 6-7: Understand the results and collect more data. Begin compiling
figures and writing to make the work more presentable.

WEEK 8-9: Further documentation of the lab notebook, and program, for
future researchers. Begin retaking data if required for the final paper.
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