

Use of the Bayes Factor to Improve the Detection of Binary Black Hole Systems

Avi Vajpeyi Rory Smith, Jonah Kanner

LIGO SURF 16

<u>Summary</u>

Introduction

- Detection Statistic
- Bayesian Statistics
- Selecting Background Events
- Bayes Factor
 - Results
 - Drawbacks
- Bayes Coherence Ratio
 - Results
 - Comparison with SNR

Overview

Some candidate events like LVT151012 have low Signal-to-Noise ratios which fall within the background distribution

Overview

Can the Bayes factor help increase the detection confidence for binary black hole systems?

LIGO

LIGO

LIGO

LIGO

A Gentle Introduction - Bayesian Statistics

Probability of a hypothesis, H conditional some data D 'Posterior Density'

1GO

Probability of Data given Hypothesis 'Likelihood' Probability of the Hypothesis 'Prior'

 $P(H \mid D) =$

 $P(D \mid H) \quad P(H)$ P(D)Probability of the data

'Evidence'

P(H) =

ΥΟυ ΗΆνε Ηγροτηεsιτιs

LIGO

P(H) = YOUHAVE HYPOTHESITIS

PROBABILITY OF P(S|H) = SYMPTOMS GIVEN = 0.95 THE HYPOTHESIS

LIGO

P(H) = you have = 0.00001hypothesitis

 $\begin{array}{rcl} & & & & & & \\ PROBABILITY OF \\ P(S|H) &= & & & & \\ & & & & \\ SYMPTOMS GIVEN &= & 0.95 \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

LIGO

P(H) = you have = 0.00001hypothesitis

P(S|H) = SYMPTOMS GIVEN = 0.95THE HYPOTHESIS

 $(S) = \begin{array}{l} \text{THE EVIDENCE, OR} \\ \text{PROBABILITY OF} = 0.01 \\ \text{HAVING SYMPTOMS} \end{array}$

Ehh, I initially forgot about P(H)

ړ,

LIGO

$P(H | S) = \frac{(0.95) (0.00001)}{(0.01)}$

= 0.00095

LIGO

Bayes Theorem tells me how to calculate probabilities of hypothesis, or models

LIGO

Bayes Theorem tells me how to calculate probabilities of hypothesis, or models

Helps compare different models!

Models in GW

LIGO

Hypothesis 1 : data = Gaussian Noise + GW Strain

Hypothesis 2 : data = Gaussian Noise

Bayes Factor =
$$\frac{\text{Evidence}(d = n + s)}{\text{Evidence}(d = n)}$$

LIGO

Bayes Factor =
$$\frac{\text{Evidence}(d = n + s)}{\text{Evidence}(d = n)}$$

$$Evidence = \int_{\Theta} (Prior) \ (Likelihood) \ d\vec{\theta}$$

Product calculated for every set of parameters, Θ (parameters like masses, spins etc of black holes)

Bayes Factor

- Calculated using entire set of parameters (all possible templates)
- Takes into account spins orientations, and magnitudes

Bayes Factor =
$$\frac{\text{Evidence}(d = n + s)}{\text{Evidence}(d = n)}$$

Bayes Factor

LIGO

- Calculated using entire set of parameters (all possible templates)
- Takes into account spins orientations, and magnitudes

Bayes Factor = $\frac{\text{Evidence}(d = n + s)}{\text{Evidence}(d = n)}$

All Parameters Considered

Signal to Noise Ratio

- Maximum Likelihood Estimator (uses one template)
- Does not consider spins orientations, and magnitudes

 $SNR = max_{\vec{\theta}} \frac{(d|h(\vec{\theta}))}{\sqrt{(h(\vec{\theta})|h(\vec{\theta}))}}$

Signal to Noise Ratio

LIGO

- Maximum Likelihood Estimator (uses one template)
- Does not consider spins orientations, and magnitudes

 $SNR = max_{\vec{\theta}} \frac{(d|h(\vec{\theta}))}{\sqrt{(h(\vec{\theta})|h(\vec{\theta}))}}$

One set of Parameters Considered

Project Motivations

Bayes Factor may prove to be more robust than the SNR

Project Motivations

Bayes Factor may prove to be more robust than the SNR

Project Goals

Can we use the Bayes factor as a detection statistic?

Obtaining the Bayes Factor

Once we run Parameter Estimations for the events, we can calculate the Bayes Factor

LIGO

Ln Bayes Factors - GW signals: GW150914 - 289.8 ± 0.3 GW151226 - 60.2 ± 0.2 LVT151012 - 23.0 ± 0.1 Values in ~10's range

Ln Bayes Factors - Noise: Values in ~1's range

Generating Background Data

LIGO

Hanford Strain Data	
Coherent Data	
Livingston Strain Data	

TIME

Generating Background Data

Generating Background Data

LIGO

False Alarm Rate Plotted Against The SNR

Bayes Factor Results

Bayes Factor as a Detection Statistic, using only Coalescing Binary Back Hole Templates

Bayes Factor Results

Bayes Factor as a Detection Statistic, using only Coalescing Binary Back Hole Templates

Bayes Factor Results

Bayes Factor as a Detection Statistic, using only Coalescing Binary Back Hole Templates

LIGO

Real GW Spectogram

LIGO

Real GW Spectogram

Glitch Spectograms

LIGO

Hypothesis 1 : data = Gaussian Noise + GW Strain

Hypothesis 2 : data = Gaussian Noise

4GO

A glitch in one detector's data inflates the Coherent Bayes Factor

Coherent Bayes Factor = 142.82

* Figures are not real, Numbers are

A glitch in one detector's data inflates the Coherent Bayes Factor

Incoherent Bayes factor = 0.91

4**GO**

Incoherent Bayes factor = 152.58

Coherent Bayes Factor = 142.82

* Figures are not real, Numbers are

Bayes Coherence Ratio

LIGO

$$\mathcal{B}_{R} = \frac{\mathcal{B}_{SN}}{\mathcal{B}_{SN}^{I(H)} + \mathcal{B}_{SN}^{I(L)}}$$

The Bayes Coherence Ratio Reduces the error that appears in the Coherent Bayes Factor

Bayes Coherence Ratio

LIGO

SUM OF BOTH DETECTOR'S BAYES FACTORS **Results for Bayes Coherent Ratio**

Set 2 Chirp Mass Range: $24.5 - 45.9 M_{\odot}$

LIGO

Bayes Coherence Ratio as a Detection Statistic

Additional Information Available

Top Summary statistics				
		maP	maxL	stde
logw		-63.9420308376	-64.4376360327	16.05
redshift		0.00961537938354	0.00865935297158	0.000
tilt_spin2		2.48513498513	2.71409201537	0.414
tilt_spin1		1.28658153514	1.32002002608	0.056
f_ref		20.0	20.0	0.0
psdscaleflag		0.0	0.0	0.0
phi_jl		4.9058602691	4.96840312361	0.071
11_optimal_snr		17.2586721755	17.5667235864	1.027
v1h1_delay		0.00751137733459	0.00826120376587	0.000
h111_delay		-0.00925827026367	-0.00932765007019	6.647
signalmodelflag		1.0	1.0	0.0
logl		-10309.6732874	-10309.0517577	2.927
deltalogl11		160.999763497	161.58278359	2.738
h1_cplx_snr_arg		0.411353471019	0.111878888247	0.425
deltaloglh1		2.29302471921	2.33153436158	1.084
sky_frame		1.0	1.0	0.0
polarisation		0.331237361641	0.248401261922	0.058
deltalogl		163.292788216	163.914317951	2.927
h1_cplx_snr_amp		2.39491070701	2.19945022169	0.125
l1v1_delay		0.00174689292908	0.00106644630432	0.000
mf_source		144.998641396	144.366620189	1.048
l1h1_delay		0.00925827026367	0.00932765007019	6.647
v1_end_time		1128443202.01	1128443202.01	0.000
eta		0.0990158458624	0.0990262339649	0.000
m1		132.375246642	131.678073268	0.981
rightascension		3.93346951378	3.96231717612	0.026
h111_relative_phase		0.386040056127	0.0600591965268	0.426
		16.6008881791	16,5156866008	0.137

LIGO

We have a lot of additional information that we could potentially use to distinguish the outlier as a glitch

L1 optimal SNR : 17.2 H1 optimal SNR : 2.6

Comparing Detection Statistics

Signal-to-Noise Ratio as a Detection Statistic

LIGO

Bayes Coherence Ratio as a Detection Statistic

Conclusions and Future Work

4GO

- Study the low FAR background events
- Determine if BCR can be used in addition with SNR as a detection statistic
- Expand the work for more mass bins
- Repeat the Study with Binary Neutron Star Signals

Acknowledgements

Thanks to NSF, Dr Rory Smith, Dr Jonah Kanner, Professor Alan Weinstein and the LIGO SURF pen.