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Abstract

On September 14th, 2015, aLIGO detected the first gravitational wave
with a very large Signal-to-Noise Ratio (SNR). In contrast, there are sev-
eral candidate events with low SNR values, which fall within the back-
ground distribution. This paper investigates an alternative detection
statistic to SNR, known as the ‘Bayes Factor.’ The Bayes Factor is the
ratio between the probability that the strain data contains a gravitational
wave signal plus Gaussian noise, to the probability that strain data con-
tains only Gaussian noise. In contrast the SNR is a maximum likelihood
estimator, while the Bayes factor takes into consideration all possible bi-
nary configurations, including spin orientations and magnitudes. Hence
the Bayes factor might prove to be more robust than SNR. This study
focuses only on binary black hole systems.
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1 Introduction
The completion of the two Advanced Laser Interferometer Gravitational-Wave
Observatories (aLIGO) has led to the discovery of a gravitational-wave signal
[2]. This paper deals with a new detection statistic, involving Bayesian statis-
tics, to rank the different candidate events (the strains in the data sets that
could be due to gravitational waves). The candidate events we focus on are from
binary black hole systems as they are believed to be common in the Universe [1].

Before we study this new detection statistic, we will discuss how data is cur-
rently being recorded and analysed.

1.1 Introduction to the physics of LIGO
Each of the aLIGO observatories uses a modified Michaelson Interferometer that
measures the difference in the length of the orthogonal arms of the observatory
to detect the presence of a gravitational wave [2]. On passing, a gravitational
wave induces a difference in the length of the arms which is measured as a phase
shift in the circulating laser light.

To determine if data recorded by LIGO store gravitational wave information,
the data is processed with two search techniques. One search looks for generic
transient waveforms ( unmodelled or unexpected waveforms) in data [7]. The
second is a match filtered search that compares the data with templates of wave-
forms generated by general relativity [7].

Both the search processes are made challenging due to the background noise
present in the data. This background noise can result from defects in a mirror,
the uncertainty in the number of photons travelling in a the laser beam (shot
noise), seismic activity, or even thermal noise generated by the Brownian motion
of electrons inside circuits [9]. To separate strains caused by background noise
from those caused by gravitational waves, the data from one LIGO observatory
is compared with another LIGO observatory’s data [2]. To compare the data
sets, one of the them can be time-shifted so that it matches the data in the other
detector over the light-travel time between the detectors. That is, one data set
can be time-shifted so that both of the data sets lie along the same interval of
time.

After making the necessary time shift, events present in one data set but not
the other become apparent. This process cuts a majority of the strains that
may have been present due to noise [2]. We attempt to discount any remaining
noise-strains by implementing a detection statistic to rank the strains according
to the likelihood that the strain resulted from a gravitational wave.

The detection statistic currently being used to rank strains according to the
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maximum likelihood of it being due to a gravitational wave is the signal-to-
noise ratio (SNR) detection technique [7]. This method compares the power of
the strain signal to the power of the remaining noise at a given point [9]. Al-
though the power of the noise is difficult to calculate, we know that this ranking
process can make some gravitational wave strains stand out, as seen from the
Fig 1. However, we believe that this method lacks the sensitivity necessary to
detect some gravitational waves that do not have SNR values as high as those of
GW150914. Hence we would like to investigate an alternate detection statistic,
specifically one that compares the relative probability that a data set contains a
strain due to a gravitational wave to the probability that the data just contains
noise. This ratio is known as the Bayes Factor.

Additionally, the templates that are used in the matched filtered searches ac-
count for only a small subset of the vast possibility of gravitational wave signals.
This might result with some gravitational waves signals that do not have tem-
plates to be left undetected. In contrast, the LALInference program, which is
what will be used to implement the new detection statistic, uses templates that
can describe a far bigger set of signals. Hence, the Bayes factor might prove to
be more sensitive than SNR, as we will have more information about the signal.

Figure 1: Search results of the generic transit search in which the first grav-
itational wave signal, marked GW150914, was detected. The wave strain of
GW150914 stands out as the strongest strain in the entire search. SNR was
used in this search to calculate the background noise and the events. Figure
taken from [2]
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1.2 Introduction to Bayesian Inference for Gravitational
Wave Analysis

To compute the Bayes factor between two hypotheses, we need to first define
the models we are comparing. The models are descriptions of the data d(t),
which contains either only noise, or noise along with a gravitational wave sig-
nal, parametrized by a certain vector ~θ. The data d(t) is recorded in the time
domain, but can be written in the frequency domain at the frequency f of the
detector as d̃(f) = h̃(f) + ñ(f). The Fourier Transformed data d̃(f) is at times
easier to work with.

The parameter vector ~θ contains information on several quantities describing
the binary black hole system such as the masses of the black holes (m1,m2),
their spin vectors, and the distance of the black holes from Earth [10]. This
vector also contains quantities such as the GPS time at the geocentre at which
the gravitational wave passes the Earth (t0), and the phase of the signal at this
time (φ0) [10]. The observed signal is actually dependant on fifteen quantities
[10]:

~θ = {m1,m2, t0, φ0, DL, α, δ, ψ, ι, ~s1, ~s2}.

The noise that is present in the data is assumed to be a Gaussian with a mean of
zero, and a variance described by the noise spectral density of the data, Sn(f),
at a frequency f [10]. Under these standard assumptions, we can define the
likelihood of noise to be given by the equation

P (n(f)) ∝ 1√
2πσ(f)2

e
1
2

(
n(f)
σ(f)

)2
, (1)

with µ = 0 and σ = Sn(f).

Finally, we can formally define the models we will use as:

• Hnull: the noise model, which corresponds to the hypothesis that d(t)
contains only noise, Hnull : d(t) = n(t).

• HGW : the gravitational wave signal model, which corresponds to the
hypothesis that the data contains noise, and a gravitational wave sig-
nal parametrised by ~θ. Hence the model is defined by HGW : d(t) =

h(~θ, t) + n(t).

We can compare these two models by calculating the relative probabilities in the
form of the posterior odds ratio OGW,null between the two of them, as explained
in Ref [10],
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OGW,null =
P (d|HGW )

P (d|Hnull)

P (HGW )

P (Hnull)

= BGW,null
P (HGW )

P (Hnull)
, (2)

where BGW,null is the ‘Bayes’ Factor,’ which is equal to :

BGW,null =
P (d|HGW )

P (d|Hnull)
. (3)

It should be noted that the relative probability, Eq 2, and the Bayes factor,
Eq 3, contain no reference to the signal parameters ~θ. Hence, the Bayes factor
BGW,null can be calculated from our hypothesis, for any choice of model.

To be able to account for the set of parameters ~θ for a gravitational wave, the
likelihood of the model HGW needs to be marginalised over all the parameters,
weighted by their prior probability distribution, giving the marginal likelihood
or evidence, given by P (d|HGW ) [10].

To calculate P (d|HGW), first we need to determine the posterior probability den-
sity function (PDF). For gravitational wave analysis, the PDF of the parameters
~θ is [9]:

p(~θ|d,HGW ) =
p(~θ|HGW ) p(d|~θ,HGW )

p(d|HGW )
, (4)

or in other terms,

Posterior Probability Density Function =
Prior × Likelihood

Evidence
.

In other words, in Eq 4, we have each modelHGW , to have a vector of parameters
~θ, with which we can calculate a ‘Prior’ distribution of P (~θ|HGW ). This prior
states what specific values the model HGW might be expected to take from the
data set d. We also have p(d|~θ,H), which is the ‘likelihood’ of the data, given
that the model HGW is true. This likelihood can be calculated for a model Hi

with

p(d|h,Hi) ∝ exp
[
− 1

2
(d− h|d− h)

]
∝ exp

[
− 2

T

∑
k>0

|d̃(fk)− h̃(fk)|2

S(fk)

]
, (5)

as seen in Ref [10]. In this equation, the term (d − h|d − h) is referred to as a
noise-weighted inner product, which is a mathematical tool used often in signal
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analysis. The noise weighted inner product of two signals A and B can be
calculated as shown in Ref [8],

(A|B) = 2

∫ ∞
0

Ã∗(f)B̃(f) + Ã(f)B̃∗(f)

Sn(f)
df.

Additionally, the term T is the duration of the data that contains the signal
of the gravitational wave. It is equal to the inverse of the size of the discrete
frequency being stepped over: df = 1/T

To finally solve for p(d|HGW ), we rearrange Eq 4 and integrate over ~θ, to get

P (d|HGW ) =

∫
Θ

P (~θ|HGW ) P (d|~θ,HGW )d~θ (6)

Evidence =

∫
Θ

(Prior) (Likelihood) d~θ (7)

since the integral of the PDF, by definition of a probability density, is∫
Θ

p(~θ|d,HGW ) d~θ = 1.

We can now use the value for p(d|HGW ) from Eq 6, and substitute it into our
equation for the Bayes Factor, Eq 3. This Bayes’ Factor may be able to better
highlight the strains due to gravitational waves in our data.

We will demonstrate the use of the Bayes factor by generating a figure, like
Fig 1. However, instead of using SNR to calculate the background noise and
rank the candidate events, the Bayes factor will be used.

2 Approach
The main objective of this project will be to assess the sensitivity of the Bayes’
Factor to rank gravitational waves that might have been missed using SNR as
the detection-statistic. This analysis will be done with a procedure that we will
write, with the help of the LALInference program.

We will begin by establishing the search background of the noise, with the help
of the Bayes factor. This search background is made after time-shifting the
data, as discussed in Section 1.1. We will then inject gravitational wave signal
into data sets, and use the new detection statistic to study if it can detect the
waves. If the Bayes Factor is unable to detect the gravitational wave signal, we
will study the thresholds at which the the gravitational wave signals can finally
be detected with the Bayes factor.

6



We will then study past data and see if the Bayes Factor detection statistic can
help extract more gravitational waves signals from the noise in the various data
sets. We will also study whether the new detection statistic will be able to detect
gravitational waves from quieter events, that would appear as the background
of SNR, as seen in Fig 1.

3 A Simple Bayesian Statistics Calculation
Bayesian Statistics can get complicated to program. To understand program-
ming techniques to compute the Bayes factor between two hypothesis and to
evaluate the posterior densities for unknown parameters in models, we began
the summer by studying a simple example.

Figure 2: Plots of the raw data used in this example.

In the example, there was some data d(x) provided that had some Gaussian
noise built in with a standard deviation of σ = 5. We were asked to fit the
data with two models. The first model proposed that the data consists of a
straight line passing through the origin and some noise, and the second model
hypothesised that the data contains only noise. We this information, we can
define the two models:

• Hm: the signal model, which corresponds to the hypothesis that d(x)
contains a line passing through the origin (mx) and some Gaussian noise
n(x),

Hm : d(x) = mx+ n(x)

.
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• Hn: the noise model, which corresponds to the hypothesis that the data
contains only Gaussian noise, and is defied as

Hn : d(x) = n(x)

.

In both of the models, the noise can be defined by Gaussian as in the Eq 1. In
this case, we set σ2 = 5 and µ = 0 to get:

n(x) =
1

5
√
2π

e
1
2 (
x
5 )

2

. (8)

	

Figure 3: Plots of the Posteriors

Modifying the equation for the calculation of the posterior density function,
Equation 4, we calculated the PDF for Hm with

P (m|d,Hm : d(x) = mx+ n(x)) =
P (m|Hm) P (d|m,Hm)

P (d|Hm)
, (9)

and we calculated the posterior density for Hn with

P (m|d,Hn : d(x) = n(x)) =
P (m|Hn) P (d|m,Hn)

P (d|Hn)
. (10)

In both equations, we calculated the likelihood function using Eq 5. For exam-
ple, the likelihood for the noise model can be written as

P (d|d(x) = n(x)) ∝ exp
[
− 1

2

∑
i>0

|n(xi)|2

σ

]
while the likelihood for the model Hm is

P (d|d(x) = mx+ n(x)) = P (d|n(x) = d(x)−mx)

∝ exp
[
− 1

2

∑
i>0

|d(xi)−mxi|2

σ

]

8



Plots of the posterior densities for both the models can be seen in Figure 3.
Looking at the plot for the posterior distributions for the Hm model, we can see
a peak at 7.6± 0.4, which is what the most probable value for the slope of the
line would be. Looking at the plots for the noise model, we see that the there is
no regions of high probability, suggesting that the noise model does not fit the
data well.

To see how well the the model Hm fits the data compared to model Hn, we can
compute the Bayes factors of the models. From Eq 3, we know that the Bayes
factor is the ratio of the marginal likelihoods for the two models. Hence, in this
case, the Bayes factor between the Hm and Hn models is

Bm,n =
P (d|Hm)

P (d|Hn)
= exp [233170].

This value is very high, and hence, this demonstrates that the model Hm is a
much more likely model than Hn. Hence, from this, we can conclude that the
given data d(x) contains a line that masses through the origin and has a slope
of 7.6 ± 0.4 with some noise. In the next section, we will discuss how we can
use Bayesian Inference to study gravitational wave strain data.

4 An Example of Bayesian Inference for Binary
In-Spirals

As seen in the previous example, Bayesian inference can provide efficient and
powerful approaches to model selection and parameter estimation. In this sec-
tion, we describe the computational processes and theory needed to analyse
some aLIGO strain data. We discuss how Bayesian inference can be used to
calculate both the Bayes factor of the signal and the parameters that generated
the signal. Note that this example uses gravitational wave strain data that was
injected into noise data collected from the detectors during the observing run
of 2015.

The starting point for data analysis begins with the strain data h(t) that is
recorded by LIGO during the duration of a run. This data is passed through a
band pass filter to allow only signals between 35-350 Hz, as this is the range in
which LIGO is sensitive to frequencies. The data is then run through another
filter to reject frequencies that are from known noise sources [6].

After the data is filtered, it is run through a series of generic gravitational wave
templates [3]. If the data matches one of the generic templates, it is considered
to be a candidate event, and is then looked at again more closely.
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4.1 Model Selection
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Figure 4: Whitened strain data’s imaginary (red) and real (blue) parts of the
frequency from one observatory. The data is from the first observing run in
2015, and is supposed to contain a candidate event.

In Figure 4 we have some data that is considered to contain a candidate event.
The figure contains the whitened strain data (the strain data divided by the
noise’s standard deviation) plotted against the frequency. We obtain the real
and the imaginary parts of the frequency by calculating a Fast Fourier Trans-
form of the initial time data as discussed in the previous section.

Since the data in Figure 4 contains a candidate event, the data can be fit by
either of the two models:
• HGW model - a gravitational wave strain and noise

• Hnull model - noise that triggered the program to consider it a candidate
event

To select which model fits the data better, we can calculate the marginal like-
lihoods for both the models, with Eq 6. Since we have data from two observa-
tories, and since in this case, we only look at two parameters, the equation for
calculating the marginal likelihood can be re-written for the HGW model as

P (dL, dH |h ∝ m1,m2) =

∫
m1,m2

P (m1,m2) P (m1,m2|dH) dm1 dm2

×
∫
m1,m2

P (m1,m2) P (m1,m2|dL) dm1 dm2 .

In this equation, the likelihood for the masses m1 and m2 given the data at
Hanford and Livingston (dH , dL) is calculated for each set of values for m1,m2

(∀m2 < m1). After the likelihood is calculated for all sets of masses (∀m2 < m1),
the evidence is calculated with Eq 6.
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With the evidence for both models, we calculate the log of the Bayes factor, by
modifying Eq 3 to

log BGW,null = log EvidenceGW − log Evidencenull
= 50, 000, 000.

This value suggests that there is a higher probability that the data contains a
gravitational wave strain and some noise than just noise.
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Figure 5: A histogram of strain data that does not have any strain due to a
gravitational wave. This displays that noise in the data is Gaussian with a zero
mean.

Note that the noise in this data is considered to be a Gaussian with a zero
mean, as discussed in section 1.2. This is because if we plot strain data that
contains only noise, and create a histogram of the data, we get a plot as seen
in Figure 5. This is a Gaussian with a mean of µ ≈ 0. In most cases, the data
that is recorded is mostly noise, and even data with gravitational wave strains
appear to look like they only have noise. It is with the various analysis methods
that we can find out is the data contains anything other than noise.

4.2 Parameter Estimation
Now that we know that the candidate event actually contains a signal, we can
use the data for the posteriors we calculated when we were calculating the
Marginal likelihood to calculate the posterior distribution for parameters. Here
we calculate the posterior distributions for the masses of the merging binary
black holes. Using Eq 4 and 5, if we plot the likelihoods for the entire set of
combinations of the masses, we can get a plot as seen in Figure 6. This indi-
cates that the masses of the black holes are most likely to be in the range of
30 - 37 solar masses in size. Note that the plot does not include the posterior
density for all the combination of masses. This is because after the diagonal,
the combinations of the masses would be repeated.
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Figure 6: 2D plot of the log of the posterior distribution for the masses of the
black holes before the merger. We can see a high posterior region near the 30-38
solar mass range. The data for this was generated from an injected gravitational
wave strain.

To get a better estimation on what the mass for each black hole may be, we can
integrate out the posterior for both masses, with the equation

P (m1|d) =
∫
m2

P (m1,m2|d)dm2.

The plot of the posterior density of the masses can be studied in Figure 7.
From this, we can conclude that the masses for the black holes are approxi-
mately 29.5 ± 0.1 and 36.4 ± 0.2 solar masses in size. This method is similar
to how parameter estimation is done for all the parameters for a gravitational
wave signal. A discussion on how a gravitational wave signal is analysed for all
the parameters is done in the next section.

5 Running LALinference to Analyse A Candi-
date Event

To analyse a candidate event, such as the one seen in Fig 8, there have been
scripts written that use several computers to compare numerous waveform tem-
plates with the signal data. The templates are different for each parameter
set, and once a certain number of templates are run for various parameters,
numerous plots of posterior destinies for various parameters along with other
information regarding the candidate event are displayed on a results page.

Depending on the initial parameters passed to the function to analyse the can-
didate event, the results page will include the log of the Bayes factor and the
Bayes factor of the gravitational wave strain model against the noise model.
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Figure 7: Posteriors for the masses of the black holes before the merger. This
was created with data from an injected gravitational wave strain. The masses
of the black holes are 29.5± 0.1 and 36.4± 0.2 solar masses in size.

This value helps determine if the candidate event has information regarding a
gravitational wave strain, or if it contains just noise.

This sections discusses an analysis of the GW150914 gravitational wave, de-
tected during the first observatory run of aLIGO. This analysis was conducted
with the ‘lalinference_nest’ script, which uses a Nested Sampling algorithm to
calculate the evidence.

The nested sampling algorithm randomly pick sets of parameters in ~θ, and first
calculates likelihoods for each set of parameters. Once a certain amount of like-
lihoods are calculated, the algorithm calculates the evidence using the several
sets of likelihoods. If the value of the evidence is below a certain threshold set
before running the script, the nested sampling algorithm chooses another set
of values of the parameters in ~θ and calculates the likelihood and the evidence
again with the new set of parameters, along with the rest of the old sets of
parameters. Note that after the initial sets of parameters are chosen, the new
set of parameters are used for the calculations only if the likelihood for the new
parameter set is a value above a certain amount. This process of picking a set
of the new parameter sets is repeated until the likelihoods are the maximum
ones present in the parameter space.

On running the analysis, we received a Bayes Factor of 5.77× 1036, which sug-
gests that there is a some gravitational wave strain signal present in the data.
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Figure 8: The filtered instrumental strain data in the Livingston detector (blue)
and Hanford detector (red). The Hanford strain has been shifted back in time
by 6.9 ms and inverted. This figure was taken from Ref [6].

As the data contains a gravitational wave, we were able to calculate various
parameters such as the masses, spins and orientations of the black holes. Fig-
ure 9 contains plots of the masses of the black holes, which informs us that the
masses of the black holes are 39.5 ± 3.2 and 32.4 ± 2.7 solar masses. Several
plots similar to the one in Figure 9 were generated for the other parameters of
the binary black hole system. These help us state what values we believe that
the system has.

We will run this analysis for several sets of instances where no gravitational
wave strain is present to calculate the Bayes factor for these instances. As
no gravitational waves are present in this data, we can create a background
distribution of the value that we expect the Bayes factor to be if no gravitational
wave data is present in the strain data. We will then run this analysis for the
several candidate events that we observed to see if they have higher Bayes factors
than the background distribution.

6 Determining a New Detection Statistic

6.1 Background Distribution
6.1.1 Preparing Sample Points

In order to create the background distribution for the new detection statistic,
we need to calculate the Bayes Factor for noise events. Noise events are events
in the strain data created due to noise sources, like seismic activity, that have a
likelihood or SNR above a certain threshold. To create a list of noise events, an
artificial time off-set of 25.13s between the Hanford and Livingston data streams
was applied to generate a dataset. As no real gravitational wave signal would be
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Figure 9: Posteriors for the black hole masses before the merger, created with
the LALinference script. The masses are 39.5± 3.2 and 32.4± 2.7 solar masses
in size. The data used for this was the same as the data from the GW150914
detection.

coincident in both the data streams after this artificial time shift, we can be cer-
tain that this time-shifted data contains no coincident gravitational wave events.

Finally, we generated a list of noise events by searching for transient waveforms,
with a GSTLal search in the 17 highest GSTlal mass bins, in the time off-set
data. The values of chirp masses,M, which is defined as

M =
(m1 m2)

3/5

(m1 +m2)1/5
,

in the 17 highest GSTlal bins range from 6.1 − 39.8. With a threshold of
SNR ≥ 4.0, we yielded 186, 000 noise events.

For each of the noise events, the GSTlal search calculated a False Alarm Rate
(FAR), associated to it. FAR for an event is the count of noise events per year
of the same likelihood. In other words, a low FAR value implies that there are
fewer noise events of such likelihoods. A figure of the FAR for the entire set of
triggers can be seen in Fig 10. We selected the lowest thousand FAR values, and
used these as the sample points that we decided to calculate the Bayes Factor
for. The lower thousand FAR values were chosen as they differ in their FAR
values from 10−7 − 10−3 per year, while in higher FAR regions, the change in
FAR is very small. A plot of the FAR values chosen against the likelihoods for
the sampled noise event points can be seen in Fig 11.
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Figure 10: The False Alarm Rate (FAR) plotted against the number of prior
False Alarm Rates. The lowest FAR value in this graph is 10−7. We see that
there is a larger spread of the FAR values between each data point for the first
thousand data points.

6.1.2 Analysing with IMRPhenomPv2pseudoFourPN

As this is an initial study, when we analysed the noise events with IMRPhe-
nomPv2pseudoFourPN, we used only theM bin of 24.6− 45.9. This produced
several different useful Bayes Factor values:

• BSN - the signal to noise coherent log Bayes Factor.

• BI(D)
SN - the incoherent log Bayes Factors at a detector ‘D.’

• BCV - the coherent versus incoherent log Bayes Factor.

The signal to noise coherent log Bayes Factor is calculated as

log BSN =log P (dHL|H : dHL = h+ n)

− log P (dHL|H : dHL = n). (11)

Here, dHL is the time from both the data sets in Hanford and Livingston.

The incoherent log Bayes Factor is what the Bayes Factor is calculated to be
using only one detector’s data set.
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Figure 11: The False Alarm Rate plotted against the log Likelihood. The green
data points are those which we are using to generate the background distribution
with the Bayes Factor. We see that for lower log Likelihood values, the FAR
does not appear to be changing much. However, at higher values for the log
Likelihood (∼ 3), smaller changes cause a large variation in the value for the
FAR. Additionally, we see that at higher log Likelihood values, the FAR is lower.
This means that there is a smaller chance of having a noise event of high log
Likelihoods.

Finally, the coherent versus incoherent log Bayes Factor, also known as the log
Bayes Coherence ratio, is calculated as

BCV =
BSN

BI(H)
SN + BI(L)

SN

. (12)

This is a ratio of the coherent Bayes Factor and the sum of the incoherent Bayes
Factors of the separate observatory’s data sets.

We can now try to compare these different Bayes factors for the noise events to
the SNR, to understand how they can be used as a detection statistic.

6.1.3 Bayes Factors for Sampled Noise Events

After analysing the sample points, we were able to compare the Bayes Factor
for the noise events to the SNR of the noise events. A plot of the SNR and the
Bayes Factor against the FAR can be seen in Fig 12. From this plot, we can
observe that for some of the sampled points, the Bayes Factor is very high. For
example, the noise event which occurred at the GPS time of 1127409058.94s
has a log Bayes Factor of 142.82. On checking the incoherent log Bayes Factors
obtained from the Hanford and Livingston data sets, we noted that they are
152.58 and 0.91. The fact that the large log Bayes Factor was present only in
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Figure 12: The SNR (yellow diamonds) and Log Bayes factor (cyan squares)
plotted against FAR. The Data points are coloured and sized according to their
Ln Likelihoods (dark end ∼ 4.6 to the white end ∼ 10.3).

the Hanford data set suggests that the large value was most likely due to a
glitch. The large value could also be due to the fact that the data does not fit
the noise model too well. This could happen if the noise is not Gaussian, as
expected by the model.

The reason why the Hanford data set’s incoherent log Bayes Factor affects the
final log Bayes factor, is because of the way the log Bayes Factor is calculated.
Eq 11 for the log Bayes Factor shows us that it is calculated using the data from
both the observatories,dHL (the time-shifted data). Because both data sets are
used, the glitch in the Hanford data causes the coherent log Bayes factor to be
higher than it should be. We would like the Bayes factor to be high only if the
incoherent Bayes Factor is high at both data sets. Thus, instead of using the
coherent Bayes Factor, we can use BCV - the Bayes Coherence Ratio.

As the Bayes Coherence Ratio is the ratio of the coherent Bayes Factor and the
sum of the incoherent Bayes Factors of the separate observatory’s data sets, its
value is high only only if the Bayes Factor is high at both the observatories.
The previously mentioned noise event with a log Bayes Factor of 142.82 has a
log Bayes Coherence ratio of −10.62, a low value as we would expect for noise
events. This illustrates how the Bayes Coherence Ratio may be a better de-
tection statistic than the Bayes Factor, as sometimes the Bayes Factor may be
large for noise events.

6.1.4 Bayes Coherence Ratio for Sampled Noise Events

As discussed in the previous section, we believe that using the Bayes Coherence
Ratio may be more useful as a detection statistic than the Bayes Factor. Hence,
we calculated the Bayes Coherence Ratio for the sampled noise events. To com-
pare the Bayes Coherence Ratio to the SNR of the noise events, we can study
the plot in Fig 13.
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Figure 13: The SNR (yellow diamonds) and Log Bayes factor (cyan squares)
plotted against FAR. The data points are coloured and sized according to their
Ln Likelihoods (dark end ∼ 4.6 to the white end ∼ 10.3).

From the plot in Fig 13, we see that at higher FAR values, while the SNR fluc-
tuates around its average value 8.2 ± 0.5, the Bayes Coherence Ratio appears
to fluctuate more around its average, −0.23± 1.2. It is important to note these
values mean greatly different things. The Bayes Coherence Ratio informs us
how well the model that the data contains noise and a gravitational wave signal
compares against the model that the data contains only noise. As it compares
models, to compute it, all possible configurations of templates and parameters
must be considered. If the Bayes Coherence Ratio is low, this means that the
noise event has a low probability of being due to a gravitational wave signal, as
we would expect.

Unlike the Bayes Coherence Ratio, the SNR value does not consider all the
possible templates and possible parameter values. It instead demonstrates how
likely it is for a specific template to match the given data. Hence we can con-
clude that the Bayes Coherence Ratio is more generic than the SNR of a noise
event, as it is calculated using all possible templates and parameters, rather
than just a singular template. To get a better understanding of how the detec-
tion statistics differ, we can compare their values to the Likelihood of the noise
events.

Studying the graphs in Fig 14, we observe a correlation between the SNR and
the log likelihood, as the slope of its fitted line is 0.25±0.02. In comparison, the
correlation between the log Bayes Coherence Ratio and the log likelihood ap-
pears to be much weaker, given the slope of its fitted line is equal to 0.05±0.04.
If we extrapolate for what the data might be at higher likelihoods, we can hy-
pothesize that at higher likelihoods, we may get higher SNR values, while the
log Bayes Coherence Ratios may not increase as much. This is because of the
weaker correlation between log Bayes Coherence Ratio and the log likelihood of
the noise events. This indicates that at higher likelihood noise events, an SNR
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Figure 14: Plots of the various detection statistics against the Log Likelihood
of the noise events. There appears to be a correlation between the SNR and the
log Likelihood, as seen by the slope of the fitted line equal to 0.25± 0.02. The
correlation between the log Bayes Coherent Ratio and log Likelihood appears
to be less, given that the slope of the fitted line for this is equal 0.05 ± 0.04.
The plot of the Log Bayes Factor demonstrates that it may not be useful as a
detection statistic.

value might have a higher value than the log Bayes Coherence Ratio which is
hypothesised to still be near zero in value. This makes sense since the log Bayes
Coherence Ratio looks at the probability that the model fits the data, and since
for noise events, the model should not fit the data, the log Bayes Coherence
Ratio should be low.

6.2 Studying Real Events with the Bayes Coherence Ratio
To compare the Bayes Coherence Ratios obtained with noise, and those that can
be obtained with real signal data, we analysed some gravitational wave strain
data that had been manually injected into the data stream being recorded by
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aLIGO. These artificial gravitational wave signals were generated by manually
shaking the mirrors in the apparatus with the static electric driver that is used
to control the motion of the mirrors. The hardware injections were taken from
[4], and only those injections which were successful and coherent at both aLIGO
observatories (Livingston and Hanford) were considered. Additionally, we de-
cided to look at how the ratio’s from the noise events compare against those of
the events during the O1 run of aLIGO.
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Figure 15: Plots of the FAR against the log Bayes Coherent Ratio, and the
SNR. The red data points are that of the sampled noise events, while the blue
ones are those of the three events in the O1 aLIGO run. We can see from the
plots that an event that falls in the same SNR range as the noise events, falls
outside the Bayes Coherence Ratio range for the noise events.

Fig 15 contains a plot of the FAR of the noise events and the events of O1,
against the log Bayes Coherent Ratio, and the SNR. Studying the plots, it is
evident that one event falls in the band of values that the noise events achieve
when using SNR as a detection statistic. However, when using the log Bayes
Coherent Ratio, this event does not fall into the band of values of the noise
events. This illustrates to us that the Bayes Coherent Ratio may be a better
detection statistic than SNR, and the Bayes Factor. However, we still need
to calculate and generate a larger list of Bayes Coherent Ratios that we can
compare with the gravitational wave events, to learn the thresholds of this
statistic.
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7 Project Schedule
WEEK 1: Restructure the problem statement, and understand the past pro-
gramming done for Bayesian statistics. Develop an approach to write the pro-
gram to create the detection statistic that will rank the events using the Bayes
factor defined in Eq 3.
WEEK 2-3: Analyse noise and injected gravitational wave signals to deter-
mine sensitivity of the Bayes Factor.
WEEK 4: Study the results in detail, and restructure the computer program.
Test the thresholds and compare the Bayes Factor detection statistic to the SNR
detection statistic.
WEEK 6-7: Understand the results and collect more data. Begin compiling
figures and writing to make the work more presentable.
WEEK 8-9: Further documentation of the lab notebook, and program, for
future researchers. Begin retaking data if required for the final paper.

———————————————————————
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