# ITM Camera Focuser Control Interface and Calibration

Chen Jie Xin Mentors: Keita Kawabe, Rick Savage, Dan Moraru

### Overview

- Calibrate PCal ETM cameras to quantify scattering

   Camera sensor
  - Camera sens
  - Lens
- 2. Set up similar DSLR cameras for viewing ITMs:
  - Hardware
  - User interface



LHO X-end photo from PCal camera (22/11/2015)

#### Sample images (ETM)



#### LHOY ETM, IR 1/100s exposure, ISO 200

LHOY ETM, IR 1/200s exposure, ISO 200

18 August 2016

## Camera calibration



- Determine relationship between pixel values and power incident on camera sensor
- Two rounds:
  - 1: Narrow beam, 1/2500s exposure, many ISOs
  - 2: Wide beam (BiCC lens), 1/2000s exposure, ISO 100
- Each colour channel R, G, B treated separately

#### Sample images



Round 1: 370 microW narrow beam 1/2500 s exposure, ISO 100

Round 2: 441 microW wide beam 1/2000s exposure, ISO 100



ISO 100 Exposure time = 1/2500s Narrow beam





### Round 1 vs Round 2

| Colour | Round 1 slope<br>(counts per watt) | Round 2 slope<br>(counts per watt) | Ratio |
|--------|------------------------------------|------------------------------------|-------|
| Red    | 1.08e12                            | 6.25e11                            | 1.73  |
| Green  | 1.92e12                            | 1.10e12                            | 1.75  |
| Blue   | 1.10e12                            | 6.45e11                            | 1.71  |

Ratio higher than expected 1.25x; Could be:

- 1. Unreliable shutter speed
- 2. Size/shape of beam matters
- 3. ???

### Further analysis

- Investigate non-linearity at higher power
  - Determine whether due to beam shape or actual non-linearity
  - Beam shape: mask out part of beam and analyse only in that region
- Also should shed some light on differences in slope

## ITM cameras

- Different viewport:
  - Viewing angle =  $1^{\circ}$
  - Distance = 32.756 m



Source: LIGO Document T14005510-v5

- Celestron 8" SCT instead of telephoto lens
- Focus adjustment using stepper motor controlled by Beckhoff module
- Possible position preset support?

### Beckhoff module

- EP7041-2002
- Connectors / Cables
  - 24 V input (Beckhoff)
  - 12 V input (Motor)
  - Stepper motor -
  - Ethernet
- Control through TwinCAT
  - PLC program



## Control program + User interface

- Control program
  - Works by controlling velocity
  - Position control not yet supported
- User interface
  - Motor status display
  - Jog buttons
  - Reset counter value

| F      | ocuser Status:   |
|--------|------------------|
|        | Ready            |
|        | RESET FOCUSER    |
| Curre  | nt Counter Value |
|        | 39566            |
|        | JOG POSITIVE     |
|        | JOG NEGATIVE     |
| Reset  | Counter Value To |
| \$2768 |                  |
| z      | ERO MIDPOINT     |
|        | DESET            |

Alpha version of UI with alpha version of control program

## Installation

- Not installed
  - Issues with housing dimensions
- Preliminary images with tripod
  - Check magnification
  - Check focusing



Tripod set-up at viewport of LHOY ITM

ITM images (?)

## Triangular features: distortion by viewport and/or alignment issues (?)



LHOY green, focused (?)

LHOY long exposure, IR

#### **Final remarks**

- Camera calibration
  - Some mysteries; further analysis needed
- ITM cameras
  - Rough focusing with alpha version of program, still no presets
  - Image quality: consider possible ways to improve
    - Will reducing aperture size help?